Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911

   
 
 

 

Non-archimedean analytification of algebraic spaces


Authors: Brian Conrad and Michael Temkin
Journal: J. Algebraic Geom. 18 (2009), 731-788
DOI: https://doi.org/10.1090/S1056-3911-09-00497-4
Published electronically: April 7, 2009
MathSciNet review: 2524597
Full-text PDF

Abstract | References | Additional Information

Abstract: We study quotient problems for étale equivalence relations in non- archimedean geometry, and we construct quotients for such equivalence relations in Berkovich’s category of analytic spaces, assuming a separatedness hypothesis on the equivalence relation. We also give counterexamples that show the necessity of separatedness hypotheses, in contrast with the complex-analytic case. As an application, we construct analytifications for separated algebraic spaces over a non-archimedean field.


References [Enhancements On Off] (What's this?)

References
  • M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71. MR 0260746
  • M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 260747, DOI https://doi.org/10.2307/1970602
  • M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709
  • Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5–161 (1994). MR 1259429
  • S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961
  • Siegfried Bosch and Werner Lütkebohmert, Stable reduction and uniformization of abelian varieties. I, Math. Ann. 270 (1985), no. 3, 349–379. MR 774362, DOI https://doi.org/10.1007/BF01473432
  • Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann. 295 (1993), no. 2, 291–317. MR 1202394, DOI https://doi.org/10.1007/BF01444889
  • Siegfried Bosch and Werner Lütkebohmert, Formal and rigid geometry. II. Flattening techniques, Math. Ann. 296 (1993), no. 3, 403–429. MR 1225983, DOI https://doi.org/10.1007/BF01445112
  • Brian Conrad, Irreducible components of rigid spaces, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 473–541 (English, with English and French summaries). MR 1697371
  • Brian Conrad, Relative ampleness in rigid geometry, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1049–1126 (English, with English and French summaries). MR 2266885
  • Brian Conrad, Modular curves and rigid-analytic spaces, Pure Appl. Math. Q. 2 (2006), no. 1, Special Issue: In honor of John H. Coates., 29–110. MR 2217566, DOI https://doi.org/10.4310/PAMQ.2006.v2.n1.a3
  • B. Conrad, Moishezon spaces in rigid geometry, in preparation (2009).
  • B. Conrad, M. Temkin, Descent for non-archimedean analytic spaces, in preparation (2009).
  • J. Dieudonné, A. Grothendieck, Éléments de géométrie algébrique, Publ. Math. IHES, 4, 8, 11, 17, 20, 24, 28, 32, (1960-1967).
  • K. Fujiwara, F. Kato, Foundations of rigid geometry, book in preparation.
  • Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331
  • Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1); Dirigé par Alexandre Grothendieck. Augmenté de deux exposés de M. Raynaud. MR 0354651
  • Schémas en groupes. I: Propriétés générales des schémas en groupes, Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274458
  • Reinhardt Kiehl, Der Endlichkeitssatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math. 2 (1967), 191–214 (German). MR 210948, DOI https://doi.org/10.1007/BF01425513
  • Reinhardt Kiehl, Analytische Familien affinoider Algebren, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1968 (1968), 23–49 (German). MR 0235160
  • Reinhardt Kiehl, Ausgezeichnete Ringe in der nichtarchimedischen analytischen Geometrie, J. Reine Angew. Math. 234 (1969), 89–98 (German). MR 243126, DOI https://doi.org/10.1515/crll.1969.234.89
  • Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647
  • Qing Liu, Un contre-exemple au “critère cohomologique d’affinoïdicité”, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 2, 83–86 (French, with English summary). MR 954265
  • M. Temkin, On local properties of non-Archimedean analytic spaces, Math. Ann. 318 (2000), no. 3, 585–607. MR 1800770, DOI https://doi.org/10.1007/s002080000123
  • M. Temkin, On local properties of non-Archimedean analytic spaces. II, Israel J. Math. 140 (2004), 1–27. MR 2054837, DOI https://doi.org/10.1007/BF02786625


Additional Information

Brian Conrad
Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
MR Author ID: 637175
Email: conrad@math.stanford.edu

Michael Temkin
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
MR Author ID: 332870
Email: temkin@math.upenn.edu

Received by editor(s): June 22, 2007
Received by editor(s) in revised form: September 14, 2007
Published electronically: April 7, 2009
Additional Notes: The work of the first author was partially supported by NSF grant DMS-0600919, and both authors are grateful to the participants of the Arizona Winter School for helpful feedback on an earlier version of this paper. Also, the first author is very grateful to Columbia University for its generous hospitality during a sabbatical visit.