Effective Iitaka fibrations
Authors:
Eckart Viehweg and De-Qi Zhang
Journal:
J. Algebraic Geom. 18 (2009), 711-730
DOI:
https://doi.org/10.1090/S1056-3911-09-00515-3
Published electronically:
March 23, 2009
MathSciNet review:
2524596
Full-text PDF
Abstract |
References |
Additional Information
Abstract: For every $n$-dimensional projective manifold $X$ of Kodaira dimension $2$ we show that $\Phi _{|M K_X|}$ is birational to an Iitaka fibration for a computable positive integer $M = M(b, B_{n-2})$, where $b > 0$ is minimal with $|bK_F| \ne \emptyset$ for a general fibre $F$ of an Iitaka fibration of $X$, and where $B_{n-2}$ is the Betti number of a smooth model of the canonical $\mathbb {Z}/(b)$-cover of the $(n-2)$-fold $F$. In particular, $M$ is a universal constant if the dimension $n \le 4$.
References
- Valery Alexeev and Shigefumi Mori, Bounding singular surfaces of general type, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 143–174. MR 2037085
- C. Araujo, The cone of effective divisors of log varieties, after Batyrev. Preprint, 2005, arXiv:math/0502174.
- Victor V. Batyrev, The cone of effective divisors of threefolds, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989) Contemp. Math., vol. 131, Amer. Math. Soc., Providence, RI, 1992, pp. 337–352. MR 1175891
- C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type. Preprint, 2006, arXiv:math/0610203.
- Thomas Bauer, Frédéric Campana, Thomas Eckl, Stefan Kebekus, Thomas Peternell, Sławomir Rams, Tomasz Szemberg, and Lorenz Wotzlaw, A reduction map for nef line bundles, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 27–36. MR 1922095
- J. A. Chen and M. Chen, Explicit birational geometry of threefolds of general type. preprint, 2007, arXiv:0706.2987.
- Osamu Fujino and Shigefumi Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1, 167–188. MR 1863025
- R. V. Gurjar and D.-Q. Zhang, $\pi _1$ of smooth points of a log del Pezzo surface is finite. I, J. Math. Sci. Univ. Tokyo 1 (1994), no. 1, 137–180. MR 1298542
- Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), no. 1, 1–25. MR 2242631, DOI https://doi.org/10.1007/s00222-006-0504-1
- Shigeru Iitaka, Deformations of compact complex surfaces. II, J. Math. Soc. Japan 22 (1970), 247–261. MR 261639, DOI https://doi.org/10.2969/jmsj/02220247
- Toshiyuki Katsura and Kenji Ueno, On elliptic surfaces in characteristic $p$, Math. Ann. 272 (1985), no. 3, 291–330. MR 799664, DOI https://doi.org/10.1007/BF01455561
- Yujiro Kawamata, On effective non-vanishing and base-point-freeness, Asian J. Math. 4 (2000), no. 1, 173–181. Kodaira’s issue. MR 1802918, DOI https://doi.org/10.4310/AJM.2000.v4.n1.a11
- Yujiro Kawamata, Katsumi Matsuda, and Kenji Matsuki, Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 283–360. MR 946243, DOI https://doi.org/10.2969/aspm/01010283
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI https://doi.org/10.2307/1971351
- János Kollár, Log surfaces of general type; some conjectures, Classification of algebraic varieties (L’Aquila, 1992) Contemp. Math., vol. 162, Amer. Math. Soc., Providence, RI, 1994, pp. 261–275. MR 1272703, DOI https://doi.org/10.1090/conm/162/01538
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
- Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992) (1992). MR 1225842
- Adrian Langer, Adjoint linear systems on normal log surfaces, Compositio Math. 129 (2001), no. 1, 47–66. MR 1856022, DOI https://doi.org/10.1023/A%3A1013137101524
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961
- Noboru Nakayama, On Weierstrass models, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 405–431. MR 977771
- G. Pacienza, On the uniformity of the Iitaka fibration. preprint, 2007, arXiv:0709.0310.
- A. Ringler, On a conjecture of Hacon and McKernan in dimension three. preprint, 2007, arXiv:0708.3662.
- Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), no. 3, 551–587. MR 2242627, DOI https://doi.org/10.1007/s00222-006-0503-2
- Eckart Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353. MR 715656, DOI https://doi.org/10.2969/aspm/00110329
- E. Viehweg: Compactifications of smooth families and of moduli spaces of polarized manifolds. Ann. of Math., to appear, arXiv:math/0605093.
- De-Qi Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka J. Math. 25 (1988), no. 2, 461–497. MR 957874
References
- V. Alexeev and S. Mori, Bounding singular surfaces of general type. Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) 143–174, Springer, Berlin, 2004. (also available at: http://www.math.princeton.edu/ kollar/) MR 2037085 (2005f:14077)
- C. Araujo, The cone of effective divisors of log varieties, after Batyrev. Preprint, 2005, arXiv:math/0502174.
- V. V. Batyrev, The cone of effective divisors of threefolds. Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), Contemp. Math. 131 (1992) 337–352. MR 1175891 (94f:14035)
- C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type. Preprint, 2006, arXiv:math/0610203.
- T. Bauer, F. Campana, T. Eckl, S. Kebekus, T. Peternell, S. Rams, T. Szemberg and L. Wotzlaw, A reduction map for nef line bundles. Complex geometry (Göttingen, 2000) 27–36, Springer, Berlin, 2002. MR 1922095 (2003h:14023)
- J. A. Chen and M. Chen, Explicit birational geometry of threefolds of general type. preprint, 2007, arXiv:0706.2987.
- O. Fujino and S. Mori, A canonical bundle formula. J. Differential Geom. 56 (2000) 167–188. MR 1863025 (2002h:14091)
- R. V. Gurjar and D. -Q. Zhang, $\sigma _1$ of smooth points of a log del Pezzo surface is finite. I. J. Math. Sci. Univ. Tokyo 1 (1994) 137–180. MR 1298542 (95m:14015)
- C. D. Hacon and J. McKernan, Boundedness of pluricanonical maps of varieties of general type. Invent. Math. 166 (2006) 1–25. MR 2242631 (2007e:14022)
- S. Iitaka, Deformations of compact complex surfaces. II. J. Math. Soc. Japan 22 (1970) 247–261. MR 0261639 (41:6252)
- T. Katsura and K. Ueno, On elliptic surfaces in characteristic $p$. Math. Ann. 272 (1985) 291–330. MR 799664 (87g:14040)
- Y. Kawamata, On effective non-vanishing and base-point-freeness. Kodaira’s issue, Asian J. Math. 4 (2000) 173–181. MR 1802918 (2002b:14010)
- Y. Kawamata, K. Matsuda and K. Matsuki, Introduction to the minimal model problem. Algebraic geometry, Sendai, 1985 (T. Oda ed.) 283–360. Adv. Stud. Pure Math., 10, Kinokuniya and North-Holland, 1987. MR 946243 (89e:14015)
- J. Kollár, Higher direct images of dualizing sheaves. I. Ann. of Math. 123 (1986) 11–42. MR 825838 (87c:14038)
- J. Kollár, Log surfaces of general type; some conjectures. Classification of algebraic varieties (L’Aquila, 1992) 261–275, Contemp. Math., 162, Amer. Math. Soc., Providence, RI, 1994. MR 1272703 (95c:14042)
- J. Kollár and S. Mori, Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998. MR 1658959 (2000b:14018)
- J. Kollár et al, Flips and abundance for algebraic threefolds. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991. Asterisque No. 211 (1992). Soc. Mathamatique de France, Paris, 1992. MR 1225842 (94f:14013)
- A. Langer, Adjoint linear systems on normal log surfaces. Compositio Math. 129 (2001) 47–66. MR 1856022 (2002h:14008)
- S. Mori, Classification of higher-dimensional varieties. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) 269–331, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987. MR 927961 (89a:14040)
- N. Nakayama, On Weierstrass models. Algebraic geometry and commutative algebra, Vol. II, 405–431, Kinokuniya, Tokyo, 1988. MR 977771 (90m:14030)
- G. Pacienza, On the uniformity of the Iitaka fibration. preprint, 2007, arXiv:0709.0310.
- A. Ringler, On a conjecture of Hacon and McKernan in dimension three. preprint, 2007, arXiv:0708.3662.
- S. Takayama, Pluricanonical systems on algebraic varieties of general type. Invent. Math. 165 (2006) 551 – 587. MR 2242627 (2007m:14014)
- E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces. Algebraic varieties and analytic varieties (Tokyo, 1981) 329–353, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983. MR 715656 (85b:14041)
- E. Viehweg: Compactifications of smooth families and of moduli spaces of polarized manifolds. Ann. of Math., to appear, arXiv:math/0605093.
- D. -Q. Zhang, Logarithmic del Pezzo surfaces of rank one with contractible boundaries. Osaka J. Math. 25 (1988) 461–497. MR 957874 (89k:14059)
Additional Information
Eckart Viehweg
Affiliation:
Universität Duisburg-Essen, Fachbereich Mathematik, 45117 Essen, Germany
Email:
viehweg@uni-due.de
De-Qi Zhang
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore
MR Author ID:
187025
ORCID:
0000-0003-0139-645X
Email:
matzdq@nus.edu.sg
Received by editor(s):
June 14, 2007
Received by editor(s) in revised form:
February 23, 2008
Published electronically:
March 23, 2009
Additional Notes:
This work has been supported by the DFG-Leibniz program and by the SFB/TR 45 “Periods, moduli spaces and arithmetic of algebraic varieties”. The second author is partially supported by an academic research fund of NUS