Inducing stability conditions
Authors:
Emanuele Macrì, Sukhendu Mehrotra and Paolo Stellari
Journal:
J. Algebraic Geom. 18 (2009), 605-649
DOI:
https://doi.org/10.1090/S1056-3911-09-00524-4
Published electronically:
March 10, 2009
MathSciNet review:
2524593
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We study stability conditions induced by functors between triangulated categories. Given a finite group acting on a smooth projective variety, we prove that the subset of invariant stability conditions embeds as a closed submanifold into the stability manifold of the equivariant derived category. As an application, we examine stability conditions on Kummer and Enriques surfaces and we improve the derived version of the Torelli Theorem for the latter surfaces already present in the literature. We also study the relationship between stability conditions on projective spaces and those on their canonical bundles.
References
- Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex surfaces, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004. MR 2030225
- A. Bayer, Polynomial Bridgeland stability conditions and the large volume limit, arXiv:0712.1083.
- A. A. Beĭlinson, Coherent sheaves on ${\bf P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI https://doi.org/10.1070/IM1990v034n01ABEH000583
- Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, DOI https://doi.org/10.4007/annals.2007.166.317
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, DOI https://doi.org/10.1215/S0012-7094-08-14122-5
- Tom Bridgeland, t-structures on some local Calabi-Yau varieties, J. Algebra 289 (2005), no. 2, 453–483. MR 2142382, DOI https://doi.org/10.1016/j.jalgebra.2005.03.016
- T. Bridgeland, Stability conditions and Kleinian singularities, arXiv:math.AG/ 0508257.
- Tom Bridgeland, Stability conditions on a non-compact Calabi-Yau threefold, Comm. Math. Phys. 266 (2006), no. 3, 715–733. MR 2238896, DOI https://doi.org/10.1007/s00220-006-0048-7
- T. Bridgeland, Spaces of stability conditions, arXiv:math/0611510.
- Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554. MR 1824990, DOI https://doi.org/10.1090/S0894-0347-01-00368-X
- Tom Bridgeland and Antony Maciocia, Complex surfaces with equivalent derived categories, Math. Z. 236 (2001), no. 4, 677–697. MR 1827500, DOI https://doi.org/10.1007/PL00004847
- Michael R. Douglas, Dirichlet branes, homological mirror symmetry, and stability, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 395–408. MR 1957548
- Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, DOI https://doi.org/10.1007/BFb0078849
- A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), no. 1, 115–130. MR 885779, DOI https://doi.org/10.1215/S0012-7094-87-05409-3
- Eiji Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), no. 1, 73–88. MR 491725, DOI https://doi.org/10.1007/BF01409342
- Eiji Horikawa, On the periods of Enriques surfaces. II, Math. Ann. 235 (1978), no. 3, 217–246. MR 491726, DOI https://doi.org/10.1007/BF01420123
- Shinobu Hosono, Bong H. Lian, Keiji Oguiso, and Shing-Tung Yau, Autoequivalences of derived category of a $K3$ surface and monodromy transformations, J. Algebraic Geom. 13 (2004), no. 3, 513–545. MR 2047679, DOI https://doi.org/10.1090/S1056-3911-04-00364-9
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106
- Daniel Huybrechts, Emanuele Macrì, and Paolo Stellari, Stability conditions for generic $K3$ categories, Compos. Math. 144 (2008), no. 1, 134–162. MR 2388559, DOI https://doi.org/10.1112/S0010437X07003065
- D. Huybrechts, E. Macrì, P. Stellari, Derived equivalences of K3 surfaces and orientation, arXiv:0710.1645.
- Daniel Huybrechts and Paolo Stellari, Equivalences of twisted $K3$ surfaces, Math. Ann. 332 (2005), no. 4, 901–936. MR 2179782, DOI https://doi.org/10.1007/s00208-005-0662-2
- A. Ishii, K. Ueda, H. Uehara, Stability conditions and $A_n$-singularities, math.AG/ 0609551 .
- Akira Ishii and Hokuto Uehara, Autoequivalences of derived categories on the minimal resolutions of $A_n$-singularities on surfaces, J. Differential Geom. 71 (2005), no. 3, 385–435. MR 2198807
- Dominic Joyce, Holomorphic generating functions for invariants counting coherent sheaves on Calabi-Yau 3-folds, Geom. Topol. 11 (2007), 667–725. MR 2302500, DOI https://doi.org/10.2140/gt.2007.11.667
- Hiroshige Kajiura, Kyoji Saito, and Atsushi Takahashi, Matrix factorization and representations of quivers. II. Type $ADE$ case, Adv. Math. 211 (2007), no. 1, 327–362. MR 2313537, DOI https://doi.org/10.1016/j.aim.2006.08.005
- Jong Hae Keum, Every algebraic Kummer surface is the $K3$-cover of an Enriques surface, Nagoya Math. J. 118 (1990), 99–110. MR 1060704, DOI https://doi.org/10.1017/S0027763000003019
- M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
- E. Macrì, Some examples of spaces of stability conditions on derived categories, math.AG/0411613.
- E. Macrì, Stability conditions on derived categories, Ph.D. Thesis, SISSA (2006).
- Emanuele Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672. MR 2335991, DOI https://doi.org/10.4310/MRL.2007.v14.n4.a10
- E. Macrì, S. Mehrotra, Remarks on stability conditions on local Calabi–Yau varieties, in preparation.
- D. R. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, DOI https://doi.org/10.1007/BF01403093
- S. Mukai, On the moduli space of bundles on $K3$ surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604
- V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc. 38 (1980), 71–135.
- So Okada, Stability manifold of ${\Bbb P}^1$, J. Algebraic Geom. 15 (2006), no. 3, 487–505. MR 2219846, DOI https://doi.org/10.1090/S1056-3911-06-00432-2
- So Okada, On stability manifolds of Calabi-Yau surfaces, Int. Math. Res. Not. , posted on (2006), Art. ID 58743, 16. MR 2276354, DOI https://doi.org/10.1155/IMRN/2006/58743
- D. O. Orlov, Equivalences of derived categories and $K3$ surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, DOI https://doi.org/10.1007/BF02399195
- R. Pandharipande, R. Thomas, Curve counting via stable pairs in the derived category, arXiv:0707.2348.
- R. Pandharipande, R. Thomas, Stable pairs and BPS invariants, arXiv:0711.3899.
- D. Ploog, Group of autoequivalences of derived categories of smooth projective varieties, Ph.D. Thesis, FU-Berlin (2004).
- David Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), no. 1, 62–74. MR 2353249, DOI https://doi.org/10.1016/j.aim.2007.05.002
- A. Polishchuk, Constant families of $t$-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109–134, 167 (English, with English and Russian summaries). MR 2324559, DOI https://doi.org/10.17323/1609-4514-2007-7-1-109-134
- Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820, DOI https://doi.org/10.1215/S0012-7094-01-10812-0
- R. P. Thomas, Stability conditions and the braid group, Comm. Anal. Geom. 14 (2006), no. 1, 135–161. MR 2230573
- Yukinobu Toda, Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008), no. 11, 6149–6178. MR 2425708, DOI https://doi.org/10.1090/S0002-9947-08-04509-1
- Yukinobu Toda, Stability conditions and Calabi-Yau fibrations, J. Algebraic Geom. 18 (2009), no. 1, 101–133. MR 2448280, DOI https://doi.org/10.1090/S1056-3911-08-00511-0
- Y. Toda, Limit stable objects on Calabi–Yau 3-folds, arXiv:0803.2356 .
- Y. Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, arXiv:0806.0062.
- K. Ueda, Homological Mirror Symmetry and Simple Elliptic Singularities, math.AG/ 0604361.
References
- W. Barth, K. Hulek, C. Peters, A. Van de Ven, Compact complex surfaces, Springer (2004). MR 2030225 (2004m:14070)
- A. Bayer, Polynomial Bridgeland stability conditions and the large volume limit, arXiv:0712.1083.
- A. A. Beilinson, Coherent sheaves on $\mathbb {P}^n$ and problems in linear algebra, Functional Anal. Appl. 12 (1978), 214–216. MR 509388 (80c:14010b)
- J. Bernstein, V. Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer (1994). MR 1299527 (95k:55012)
- A.I. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR-Izv. 34 (1990), 23–42. MR 992977 (90i:14017)
- T. Bridgeland, Stability conditions on triangulated categories, Ann. Math. 166 (2007), 317–346. MR 2373143
- T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), 241–291. MR 2376815 (2009b:14030)
- T. Bridgeland, $T$-structures on some local Calabi–Yau varieties, J. Algebra 289 (2005), 453–483. MR 2142382 (2006a:14067)
- T. Bridgeland, Stability conditions and Kleinian singularities, arXiv:math.AG/ 0508257.
- T. Bridgeland, Stability conditions on a non-compact Calabi–Yau threefold, Comm. Math. Phys. 266 (2006), 715-733. MR 2238896 (2007d:14075)
- T. Bridgeland, Spaces of stability conditions, arXiv:math/0611510.
- T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Am. Math. Soc. 14 (2001), 535–554. MR 1824990 (2002f:14023)
- T. Bridgeland, A. Maciocia, Complex surfaces with equivalent derived categories, Math. Z. 236 (2001), 677–697. MR 1827500 (2002a:14017)
- M. Douglas, Dirichlet branes, homological mirror symmetry, and stability, Proc. Int. Congr. Math. Beijing (2002), 395–408. MR 1957548 (2004c:81200)
- W. Geigle, H. Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, in: Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), 265–297, Lecture Notes in Math. 1273, Springer (1987). MR 915180 (89b:14049)
- A.L. Gorodentsev, A.N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), 115–130. MR 885779 (88e:14018)
- E. Horikawa, On the periods of Enriques surfaces. I, Math. Ann. 234 (1978), 73–88. MR 0491725 (58:10927a)
- E. Horikawa, On the periods of Enriques surfaces. II, Math. Ann. 235 (1978), 217–246. MR 0491726 (58:10927b)
- S. Hosono, B.H. Lian, K. Oguiso, S.-T. Yau, Autoequivalences of derived category of a K3 surface and monodromy transformations, J. Alg. Geom. 13 (2004), 513–545. MR 2047679 (2005f:14076)
- D. Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Science Publications (2006). MR 2244106 (2007f:14013)
- D. Huybrechts, E. Macrì, P. Stellari, Stability conditions for generic K3 categories, Compositio Math. 144 (2008), 134–162. MR 2388559 (2009a:14050)
- D. Huybrechts, E. Macrì, P. Stellari, Derived equivalences of K3 surfaces and orientation, arXiv:0710.1645.
- D. Huybrechts, P. Stellari, Equivalences of twisted K3 surfaces, Math. Ann. 332 (2005), 901–936. MR 2179782 (2007b:14083)
- A. Ishii, K. Ueda, H. Uehara, Stability conditions and $A_n$-singularities, math.AG/ 0609551 .
- A. Ishii, H. Uehara, Autoequivalences of derived categories on the minimal resolutions of $A_n$-singularities on surfaces, J. Differential Geom. 71 (2005), 385–435. MR 2198807 (2006k:14024)
- D. Joyce, Holomorphic generating functions for invariants counting coherent sheaves on Calabi–Yau 3-folds, Geom. Topol. 11 (2007), 667-725. MR 2302500 (2008d:14062)
- H. Kajiura, K. Saito, A. Takahashi, Matrix factorizations and representations of quivers II: Type ADE case, Adv. Math. 211 (2007), 327–362. MR 2313537 (2008g:16027)
- J.H. Keum, Every algebraic Kummer surface is the K3-cover of an Enriques surface, Nagoya Math. J. 71 (2005), 385–435. MR 1060704 (91f:14036)
- M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
- E. Macrì, Some examples of spaces of stability conditions on derived categories, math.AG/0411613.
- E. Macrì, Stability conditions on derived categories, Ph.D. Thesis, SISSA (2006).
- E. Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), 657–672. MR 2335991 (2008k:18011)
- E. Macrì, S. Mehrotra, Remarks on stability conditions on local Calabi–Yau varieties, in preparation.
- D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105–121. MR 728142 (85j:14071)
- S. Mukai, On the moduli space of bundles on K3 surfaces, I, In: Vector Bundles on Algebraic Varieties, Oxford University Press, Bombay and London (1987), 341–413. MR 893604 (88i:14036)
- V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc. 38 (1980), 71–135.
- S. Okada, Stability manifold of $\mathbb {P}^1$, J. Algebraic Geom. 15 (2006), 487–505. MR 2219846 (2007b:14036)
- S. Okada, On stability manifolds of Calabi–Yau surfaces, Int. Math. Res. Not. (2006), ID 58743. MR 2276354 (2007j:14060)
- D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997), 1361–1381. MR 1465519 (99a:14054)
- R. Pandharipande, R. Thomas, Curve counting via stable pairs in the derived category, arXiv:0707.2348.
- R. Pandharipande, R. Thomas, Stable pairs and BPS invariants, arXiv:0711.3899.
- D. Ploog, Group of autoequivalences of derived categories of smooth projective varieties, Ph.D. Thesis, FU-Berlin (2004).
- D. Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007), 62–74. MR 2353249
- A. Polishchuk, Constant families of $t$-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), 109–134. MR 2324559 (2008e:14020)
- P. Seidel, R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37–108. MR 1831820 (2002e:14030)
- R. Thomas, Stability conditions and the Braid group, Comm. Anal. Geom. 14 (2006), 135–161. MR 2230573 (2007j:53113)
- Y. Toda, Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008), 6149–6178. MR 2425708
- Y. Toda, Stability conditions and Calabi–Yau fibrations, J. Algebraic Geom. 18 (2009), 101–133. MR 2448280
- Y. Toda, Limit stable objects on Calabi–Yau 3-folds, arXiv:0803.2356 .
- Y. Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, arXiv:0806.0062.
- K. Ueda, Homological Mirror Symmetry and Simple Elliptic Singularities, math.AG/ 0604361.
Additional Information
Emanuele Macrì
Affiliation:
Hausdorff Center for Mathematics, Mathematisches Institut, Universität Bonn, Beringstr. 1, 53115 Bonn, Germany
Address at time of publication:
Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112-0090
Email:
macri@math.uni-bonn.de {\rm and\ }macri@mpim-bonn.mpg.de, macri@math.utah.edu
Sukhendu Mehrotra
Affiliation:
Department of Mathematics and Statistics, University of Massachusetts- Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 010003
Email:
mehrotra@math.umass.edu
Paolo Stellari
Affiliation:
Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy
Email:
paolo.stellari@unimi.it
Received by editor(s):
April 29, 2007
Received by editor(s) in revised form:
April 17, 2008
Published electronically:
March 10, 2009