Unstable blowups
Author:
Jacopo Stoppa
Journal:
J. Algebraic Geom. 19 (2010), 1-17
DOI:
https://doi.org/10.1090/S1056-3911-08-00503-1
Published electronically:
December 8, 2008
MathSciNet review:
2551756
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $(X,L)$ be a polarised manifold. We show that K-stability and asymptotic Chow stability of the blowup of $X$ along a $0$-dimensional cycle are closely related to Chow stability of the cycle itself, for polarisations making the exceptional divisors small. This can be used to give (almost) a converse to the results of Arezzo and Pacard (2004 and 2007) and to give new examples of Kähler classes with no constant scalar curvature representatives.
References
- Arezzo, C. and Pacard, F., Blowing up and desingularizing constant scalar curvature Kähler manifolds, arXiv:math/0411522v3 [math.DG] (2004).
- Arezzo, C. and Pacard, F., Blowing up Kähler manifolds with constant scalar curvature, II., arXiv:math/0504115v1 (2005). To appear in Annals of Math. 2007.
- Arezzo, C. and Pacard, F., On the Kähler classes of constant scalar curvature metrics on blow ups, arXiv:0706.1838v1 [math.DG] (2007).
- Della Vedova, A., Relative stability of points and relative K-stability, in preparation.
- Chen, X., LeBrun, C. and Weber, B., On conformally Kähler, Einsten metrics, arXiv:0705.0710v2 [math.DG] (2007).
- S. K. Donaldson, Remarks on gauge theory, complex geometry and $4$-manifold topology, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 384–403. MR 1622931, DOI https://doi.org/10.1142/9789812385215_0042
- S. K. Donaldson, Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953
- S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506
- S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), no. 3, 453–472. MR 2192937
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Andrew D. Hwang and Michael A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2285–2325. MR 1885653, DOI https://doi.org/10.1090/S0002-9947-02-02965-3
- Toshiki Mabuchi, $K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593. MR 867064, DOI https://doi.org/10.2748/tmj/1178228410
- Shigeru Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003. Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. MR 2004218
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Julius Ross and Richard Thomas, A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), no. 2, 201–255. MR 2274514, DOI https://doi.org/10.1090/S1056-3911-06-00461-9
- Julius Ross and Richard Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), no. 3, 429–466. MR 2219940
- Thomas, R. P., Notes on GIT and symplectic reduction for bundles and varieties, Surveys in Differential Geometry X (S.T. Yau, editor), International Press, Sommerville, 2006. arXiv:math/0512411v3 [math.AG]
- Gábor Székelyhidi, Extremal metrics and $K$-stability, Bull. Lond. Math. Soc. 39 (2007), no. 1, 76–84. MR 2303522, DOI https://doi.org/10.1112/blms/bdl015
- Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, DOI https://doi.org/10.1007/s002220050176
- Shu, Y., Compact complex surfaces and Constant Scalar Curvature Kähler metrics, arXiv:math/0612013v1 [math.DG] (2006).
References
- Arezzo, C. and Pacard, F., Blowing up and desingularizing constant scalar curvature Kähler manifolds, arXiv:math/0411522v3 [math.DG] (2004).
- Arezzo, C. and Pacard, F., Blowing up Kähler manifolds with constant scalar curvature, II., arXiv:math/0504115v1 (2005). To appear in Annals of Math. 2007.
- Arezzo, C. and Pacard, F., On the Kähler classes of constant scalar curvature metrics on blow ups, arXiv:0706.1838v1 [math.DG] (2007).
- Della Vedova, A., Relative stability of points and relative K-stability, in preparation.
- Chen, X., LeBrun, C. and Weber, B., On conformally Kähler, Einsten metrics, arXiv:0705.0710v2 [math.DG] (2007).
- S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-manifold topology, Fields Medallists’ Lectures (M. F. Atiyah and D. Iagolnitzer, eds.), World Sci. Publ., Singapore, 1997, pp. 384–403. MR 1622931 (99i:57050)
- Donaldson, S. K., Scalar curvature and projective embeddings, I., J. Differential Geom. 59 (2001), no. 3, 479–522. MR 1916953 (2003j:32030)
- Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289–349. MR 1988506 (2005c:32028)
- Donaldson, S. K., Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), no. 3, 453–472. MR 2192937 (2006k:32045)
- Hartshorne, R., Algebraic Geometry, Springer-Verlag, Heidelberg, 1977. MR 0463157 (57:3116)
- Hwang, A. and Singer, M., A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc. 354 (2002), no. 6, 2285–2325. MR 1885653 (2002m:53057)
- Mabuchi, T., $K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575–593. MR 867064 (88b:53060)
- Mukai, S., An introduction to invariants and moduli, Cambridge University Press, 2003. MR 2004218 (2004g:14002)
- Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, Springer-Verlag, Heidelberg, 1994. MR 1304906 (95m:14012)
- Ross, J. and Thomas, R. P., A study of the Hilbert-Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), 201–255. arXiv:math/0412519v2 (2004). MR 2274514 (2007k:14091)
- Ross, J. and Thomas, R. P., An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), 429–466. MR 2219940 (2007c:32028)
- Thomas, R. P., Notes on GIT and symplectic reduction for bundles and varieties, Surveys in Differential Geometry X (S.T. Yau, editor), International Press, Sommerville, 2006. arXiv:math/0512411v3 [math.AG]
- Székelyhidi, G., Extremal metrics and K-stability, Ph.D. Thesis, Imperial College London. arXiv:math/0611002v1 [math.DG] (2007). MR 2303522
- Tian, G., Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 1–37. MR 1471884 (99e:53065)
- Shu, Y., Compact complex surfaces and Constant Scalar Curvature Kähler metrics, arXiv:math/0612013v1 [math.DG] (2006).
Additional Information
Jacopo Stoppa
Affiliation:
Università di Pavia, Dipartimento di Matematica “F. Casorati”, Via Ferrata 1, 27100 Pavia, Italy
Address at time of publication:
Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
Email:
jacopo.stoppa@unipv.it
Received by editor(s):
June 26, 2007
Received by editor(s) in revised form:
October 8, 2007
Published electronically:
December 8, 2008
Additional Notes:
The author was supported by a Ph.D. Studentship of the University of Pavia and is grateful to Imperial College, London, for the kind hospitality.