Root numbers, Selmer groups, and non-commutative Iwasawa theory
Authors:
John Coates, Takako Fukaya, Kazuya Kato and Ramdorai Sujatha
Journal:
J. Algebraic Geom. 19 (2010), 19-97
DOI:
https://doi.org/10.1090/S1056-3911-09-00504-9
Published electronically:
April 15, 2009
MathSciNet review:
2551757
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $E$ be an elliptic curve over a number field $F$, and let $F_\infty$ be a Galois extension of $F$ whose Galois group $G$ is a $p$-adic Lie group. The aim of the present paper is to provide some evidence that, in accordance with the main conjectures of Iwasawa theory, there is a close connection between the action of the Selmer group of $E$ over $F_\infty$, and the global root numbers attached to the twists of the complex $L$-function of $E$ by Artin representations of $G$.
References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Nicolas Bourbaki, Commutative algebra. Chapters 1â7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR 979760
- Christophe Breuil, Groupes $p$-divisibles, groupes finis et modules filtrĂ©s, Ann. of Math. (2) 152 (2000), no. 2, 489â549 (French, with French summary). MR 1804530, DOI https://doi.org/10.2307/2661391
- B. J. Birch and N. M. Stephens, The parity of the rank of the Mordell-Weil group, Topology 5 (1966), 295â299. MR 201379, DOI https://doi.org/10.1016/0040-9383%2866%2990021-8
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders; Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 632548
- J. H. Coates and S. Howson, Euler characteristics and elliptic curves. II, J. Math. Soc. Japan 53 (2001), no. 1, 175â235. MR 1800527, DOI https://doi.org/10.2969/jmsj/05310175
- John Coates, Takako Fukaya, Kazuya Kato, Ramdorai Sujatha, and Otmar Venjakob, The $\rm GL_2$ main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Ătudes Sci. 101 (2005), 163â208. MR 2217048, DOI https://doi.org/10.1007/s10240-004-0029-3
- J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1-3, 129â174. MR 1369413, DOI https://doi.org/10.1007/s002220050048
- John Coates, Peter Schneider, and Ramdorai Sujatha, Links between cyclotomic and ${\rm GL}_2$ Iwasawa theory, Doc. Math. Extra Vol. (2003), 187â215. Kazuya Katoâs fiftieth birthday. MR 2046599
- J. Coates and R. Sujatha, Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics, vol. 88, Published by Narosa Publishing House, New Delhi; for the Tata Institute of Fundamental Research, Mumbai, 2000. MR 1759312
- John Coates, Ramdorai Sujatha, and Jean-Pierre Wintenberger, On the Euler-PoincarĂ© characteristics of finite dimensional $p$-adic Galois representations, Publ. Math. Inst. Hautes Ătudes Sci. 93 (2001), 107â143. MR 1863736, DOI https://doi.org/10.1007/s10240-001-8189-x
- P. Deligne, Les constantes des Ă©quations fonctionnelles des fonctions $L$, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1973, pp. 501â597. Lecture Notes in Math., Vol. 349 (French). MR 0349635
- Darmon, H., Tian, Y., Heegner points over false Tate curve extensions, Preprint.
- Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), no. 2, 300â324. With an appendix by Tom Fisher. MR 2167089, DOI https://doi.org/10.1112/S0024611505015261
- T. Dokchitser and V. Dokchitser, Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3) 94 (2007), no. 1, 211â272. With an appendix by J. Coates and R. Sujatha. MR 2294995, DOI https://doi.org/10.1112/plms/pdl014
- Dokchitser, T., Dokchitser, V., Ranks of elliptic curves with a cyclic isogeny, Journal of Number Theory 128 (2008), 662â679.
- Dokchitser, T., Dokchitser, V., On the Birch Swinnerton-Dyer quotients modulo squares, arXiv:math/0610290v2, to appear in Annals of Mathematics.
- Dokchitser, T., Dokchitser, V., Regulator constants and the parity conjecture, arXiv:math 0709.2852, to appear in Inventiones Mathematicae.
- Matthias Flach, A generalisation of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), 113â127. MR 1079004, DOI https://doi.org/10.1515/crll.1990.412.113
- Ralph Greenberg, Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) Lecture Notes in Math., vol. 1716, Springer, Berlin, 1999, pp. 51â144. MR 1754686, DOI https://doi.org/10.1007/BFb0093453
- Ralph Greenberg, Iwasawa theory for $p$-adic representations, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 97â137. MR 1097613, DOI https://doi.org/10.2969/aspm/01710097
- Greenberg, R., Iwasawa theory, projective modules, and modular representations, to appear in Memoirs of Amer. Math. Soc.
- Li Guo, General Selmer groups and critical values of Hecke $L$-functions, Math. Ann. 297 (1993), no. 2, 221â233. MR 1241803, DOI https://doi.org/10.1007/BF01459498
- Yoshitaka Hachimori and Kazuo Matsuno, An analogue of Kidaâs formula for the Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581â601. MR 1689359
- Yoshitaka Hachimori and Otmar Venjakob, Completely faithful Selmer groups over Kummer extensions, Doc. Math. Extra Vol. (2003), 443â478. Kazuya Katoâs fiftieth birthday. MR 2046605
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, AstĂ©risque 295 (2004), ix, 117â290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmĂ©tiques. III. MR 2104361
- Kim, B.-D., The parity conjecture and algebraic functional equations for elliptic curves at supersingular reduction primes, Ph.D Thesis, Stanford University (2005).
- Kazuo Matsuno, Finite $\Lambda $-submodules of Selmer groups of abelian varieties over cyclotomic $\Bbb Z_p$-extensions, J. Number Theory 99 (2003), no. 2, 415â443. MR 1969183, DOI https://doi.org/10.1016/S0022-314X%2802%2900078-1
- Mazur, M., Rubin, K., Finding large Selmer ranks via an arithmetic theory of local constants, Ann. of Math. 166 (2007), 579â612.
- Mazur, M., Rubin, K., Growth of Selmer ranks in nonabelian extensions of number fields, Duke Math. J. 143 (2008), 437â461.
- J. S. Milne, Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Inc., Boston, MA, 1986. MR 881804
- P. Monsky, Generalizing the Birch-Stephens theorem. I. Modular curves, Math. Z. 221 (1996), no. 3, 415â420. MR 1381589, DOI https://doi.org/10.1007/PL00004518
- Jan NekovĂĄĆ, Selmer complexes, AstĂ©risque 310 (2006), viii+559 (English, with English and French summaries). MR 2333680
- Jan NekovĂĄĆ, On the parity of ranks of Selmer groups. II, C. R. Acad. Sci. Paris SĂ©r. I Math. 332 (2001), no. 2, 99â104 (English, with English and French summaries). MR 1813764, DOI https://doi.org/10.1016/S0764-4442%2800%2901808-5
- Michel Raynaud, VariĂ©tĂ©s abĂ©liennes et gĂ©omĂ©trie rigide, Actes du CongrĂšs International des MathĂ©maticiens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 473â477. MR 0427326
- David E. Rohrlich, Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), no. 3, 311â349. MR 1387669
- David E. Rohrlich, Scarcity and abundance of trivial zeros in division towers, J. Algebraic Geom. 17 (2008), no. 4, 643â675. MR 2424923, DOI https://doi.org/10.1090/S1056-3911-08-00462-1
- Jean-Pierre Serre, PropriĂ©tĂ©s galoisiennes des points dâordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259â331 (French). MR 387283, DOI https://doi.org/10.1007/BF01405086
- Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. MR 0450380
- Jean-Pierre Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413â420 (French). MR 180619, DOI https://doi.org/10.1016/0040-9383%2865%2990006-6
- Grothendieck, A., et al., Groupes de monodromie en géométrie algébrique (SGA 7, Vol 1), Lecture Notes in Math. 288 (1972).
- Shuter, M., Descent on division fields of elliptic curves, Cambridge Ph.D Thesis (2006).
- Richard G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85â110. MR 153722, DOI https://doi.org/10.1016/0040-9383%2863%2990025-9
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195
References
- Bass, H., Algebraic $K$-theory, Benjamin, NewYork (1966). MR 0249491 (40:2736)
- Bourbaki, N., Elements of Mathematics, Commutative Algebra, Chapters 1â7, Springer (1989). MR 979760 (90a:13001)
- Breuil, C., Groupes $p$-divisibles, groupes finis et modules filtrĂ©s, Ann. of Math. 152 (2000), 489â547. MR 1804530 (2001k:14087)
- Birch, B. J., Stephens, N., The parity of the rank of the Mordell-Weil group, Topology 5 (1966), 295â299. MR 0201379 (34:1263)
- Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press (1956). MR 0077480 (17:1040e)
- Curtis, C.W., Methods of representation theory, vol. I, John Wiley & Sons, (1981). MR 632548 (82i:20001)
- Coates, J., Howson, S., Euler characteristics and elliptic curves II, J. Math. Soc. Japan 53 (2001), 175â235. MR 1800527 (2001k:11215)
- Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O., The $GL_2$ main conjecture for elliptic curves without complex multiplication, Publ. Math. IHES 101 (2005), 163-208. MR 2217048 (2007b:11172)
- Coates, J., Greenberg, R., Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), 129-174. MR 1369413 (97b:11079)
- Coates, J., Schneider, P., Sujatha, R., Links between $GL_2$ and cyclotomic Iwasawa theory, Documenta Math. (Extra Volume: Kazuya Katoâs fiftieth birthday) (2003), 187â215. MR 2046599 (2005c:11134)
- Coates, J., Sujatha, R., Galois cohomology of elliptic curves, Tata Institute of Fundamental Research Lectures on Mathematics 88, Narosa Publishing House, New Delhi (2000). MR 1759312 (2001b:11046)
- Coates, J., Sujatha, R., Wintenberger, J.-P, On the Euler-Poincaré characteristics of finite dimensional $p$-adic Galois representations, Publ. Math. IHES 93 (2001), 107-143. MR 1863736 (2003d:11078)
- Deligne, P., Les constantes des Ă©quations fonctionnelles des fonctions $L$, Modular functions of one variable, II, Lecture Notes in Math. 349 Springer (1973), 501â597. MR 0349635 (50:2128)
- Darmon, H., Tian, Y., Heegner points over false Tate curve extensions, Preprint.
- Dokchitser, V., Root numbers of non-abelian twists of elliptic curves, with Appendix by Fisher, T., Proc. London Math. Soc. 91 (2005), 300-324. MR 2167089 (2006f:11060)
- Dokchitser, T., Dokchitser, V., Numerical computations in non-commutative Iwasawa theory, with Appendix by Coates, J., and Sujatha, R., Proc. London Math. Soc. 94 (2006), 211-272 MR 2294995
- Dokchitser, T., Dokchitser, V., Ranks of elliptic curves with a cyclic isogeny, Journal of Number Theory 128 (2008), 662â679.
- Dokchitser, T., Dokchitser, V., On the Birch Swinnerton-Dyer quotients modulo squares, arXiv:math/0610290v2, to appear in Annals of Mathematics.
- Dokchitser, T., Dokchitser, V., Regulator constants and the parity conjecture, arXiv:math 0709.2852, to appear in Inventiones Mathematicae.
- Flach, M., A generalisation of the Cassels-Tate pairing, J. Reine Angew Math. 512 (1990), 113â127. MR 1079004 (92b:11037)
- Greenberg, R., Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves, Lecture Notes in Math. 1716 Springer (1999), 51â144. MR 1754686 (2002a:11056)
- Greenberg, R., Iwasawa theory of p-adic representations, in âAlgebraic Number Theory - in honor of K. Iwasawaâ, Advanced Studies in Pure Math. 17, Kinokuniya (1989), 97â137. MR 1097613 (92c:11116)
- Greenberg, R., Iwasawa theory, projective modules, and modular representations, to appear in Memoirs of Amer. Math. Soc.
- Guo, L., General Selmer groups and critical values of Hecke $L$-functions, Math. Ann. 297 (1993), 221â233. MR 1241803 (95b:11064)
- Hachimori, Y., Matsuno, K., An analogue of Kidaâs formula for the Selmer groups of elliptic curves, J. Algebraic Geom. 8 (1999), no. 3, 581â601. MR 1689359 (2000c:11086)
- Hachimori, Y., Venjakob, O., Completely faithful Selmer groups over Kummer extensions, Documenta Math. (Extra Volume: Kazuya Katoâs fiftieth birthday) (2003), 443â478. MR 2046605 (2005b:11072)
- Kato, K., $p$-adic Hodge theory and values of zeta functions of modular forms, Cohomologies $p$-adiques et applications arithmĂ©tiques III, AstĂ©risque 295 (2004), 117â290. MR 2104361 (2006b:11051)
- Kim, B.-D., The parity conjecture and algebraic functional equations for elliptic curves at supersingular reduction primes, Ph.D Thesis, Stanford University (2005).
- Matsuno, K., Finite $\Lambda$-submodules of Selmer groups of abelian varieties over cyclotomic ${\mathbb {Z}}_p$-extensions, J. Number Theory 99 (2003), no. 2, 415â443. MR 1969183 (2004c:11098)
- Mazur, M., Rubin, K., Finding large Selmer ranks via an arithmetic theory of local constants, Ann. of Math. 166 (2007), 579â612.
- Mazur, M., Rubin, K., Growth of Selmer ranks in nonabelian extensions of number fields, Duke Math. J. 143 (2008), 437â461.
- Milne, J.S., Arithmetic Duality theorems, Progress. in Math. 1 (1986), BirkhÀuser. MR 881804 (88e:14028)
- Monsky, P., Generalizing the Birch-Stephens theorem, Math. Z., 221 (1996), 415â420. MR 1381589 (97a:11103)
- NekovĂĄĆ, J., Selmer complexes, AstĂ©risque No. 310 (2006), vii+559 pp. MR 2333680
- NekovĂĄĆ, J., On the parity of ranks of Selmer groups. II, C.R. Acad. Sci. Paris, 332 (2001), 99â104. MR 1813764 (2002e:11060)
- Raynaud, M., VariĂ©tĂ©s abĂ©liennes et gĂ©omĂ©trie rigid, Actes du CongrĂšs International des MathĂ©maticiens (Nice 1970), Tome 1, 473â477. MR 0427326 (55:360)
- Rohrlich, D.E., Galois theory, elliptic curves, and root numbers, Compositio Math. 100 (1996), 311â349. MR 1387669 (97m:11075)
- Rohrlich, D. E., Scarcity and abundance of trivial zeros in division towers, Journal of Algebraic Geometry 17 (2008), no. 4, 643â675. MR 2424923
- Serre, J.-P., PropriĂ©tĂ©s galoisiennes des points dâordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259â331. MR 0387283 (52:8126)
- Serre, J.-P., Linear representations of finite groups, GTM 42, Springer. MR 0450380 (56:8675)
- Serre, J.-P., Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413â420. MR 0180619 (31:4853)
- Grothendieck, A., et al., Groupes de monodromie en géométrie algébrique (SGA 7, Vol 1), Lecture Notes in Math. 288 (1972).
- Shuter, M., Descent on division fields of elliptic curves, Cambridge Ph.D Thesis (2006).
- Swan, R., The Grothendieck ring of a finite group, Topology 2 (1963), 85â110. MR 0153722 (27:3683)
- Swan, R., $K$-theory of finite groups and orders, LNM 149, Springer (1970). MR 0308195 (46:7310)
Additional Information
John Coates
Affiliation:
DPMMS, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England
MR Author ID:
50035
Email:
J.H.Coates@dpmms.cam.ac.uk
Takako Fukaya
Affiliation:
Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan
Email:
takakof@hc.cc.keio.ac.jp
Kazuya Kato
Affiliation:
Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan
Email:
kzkt@math.kyoto-u.ac.jp
Ramdorai Sujatha
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
MR Author ID:
293023
ORCID:
0000-0003-1221-0710
Email:
sujatha@math.tifr.res.in
Received by editor(s):
July 1, 2007
Received by editor(s) in revised form:
October 24, 2007
Published electronically:
April 15, 2009
Additional Notes:
The second author gratefully acknowledges support from the JSPS Postdoctoral Fellowship for research abroad