An Artin-Rees theorem in $K$-theory and applications to zero cycles
Author:
Amalendu Krishna
Journal:
J. Algebraic Geom. 19 (2010), 555-598
DOI:
https://doi.org/10.1090/S1056-3911-09-00521-9
Published electronically:
November 17, 2009
MathSciNet review:
2629600
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
For the smooth normalization $f : {\overline X} \to X$ of a singular variety $X$ over a field $k$ of characteristic zero, we show that for any conducting subscheme $Y$ for the normalization, and for any $i \in \mathbb {Z}$, the natural map $K_i(X, {\overline X}, nY) \to K_i(X, {\overline X}, Y)$ is zero for all sufficiently large $n$.
As an application, we prove a formula for the Chow group of zero cycles on a quasi-projective variety $X$ over $k$ with Cohen-Macaulay isolated singularities, in terms of an inverse limit of the relative Chow groups of a desingularization $\widetilde X$ relative to the multiples of the exceptional divisor.
We use this formula to verify a conjecture of Srinivas about the Chow group of zero cycles on the affine cone over a smooth projective variety which is arithmetically Cohen-Macaulay.
References
- Michel André, Homologie des algèbres commutatives, Springer-Verlag, Berlin-New York, 1974 (French). Die Grundlehren der mathematischen Wissenschaften, Band 206. MR 0352220
- Luca Barbieri Viale, Zero-cycles on singular varieties: torsion and Bloch’s formula, J. Pure Appl. Algebra 78 (1992), no. 1, 1–13. MR 1154894, DOI https://doi.org/10.1016/0022-4049%2892%2990015-8
- L. Barbieri-Viale, C. Pedrini, and C. Weibel, Roitman’s theorem for singular complex projective surfaces, Duke Math. J. 84 (1996), no. 1, 155–190. MR 1394751, DOI https://doi.org/10.1215/S0012-7094-96-08405-7
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- J. Cathelineau, Lambda structures in algebraic $K$-theory, $K$-Theory, 4, (1991), 591-606.
- Caterina Consani, ${\scr K}$-theory of blow-ups and vector bundles on the cone over a surface, $K$-Theory 7 (1993), no. 3, 269–284. MR 1244003, DOI https://doi.org/10.1007/BF00961066
- K. R. Coombes and V. Srinivas, Relative $K$-theory and vector bundles on certain singular varieties, Invent. Math. 70 (1982/83), no. 1, 1–12. MR 679769, DOI https://doi.org/10.1007/BF01393194
- Guillermo Cortiñas, The obstruction to excision in $K$-theory and in cyclic homology, Invent. Math. 164 (2006), no. 1, 143–173. MR 2207785, DOI https://doi.org/10.1007/s00222-005-0473-9
- Guillermo Cortiñas, Susan C. Geller, and Charles A. Weibel, The Artinian Berger conjecture, Math. Z. 228 (1998), no. 3, 569–588. MR 1637796, DOI https://doi.org/10.1007/PL00004634
- Philippe Elbaz-Vincent and Stefan Müller-Stach, Milnor $K$-theory of rings, higher Chow groups and applications, Invent. Math. 148 (2002), no. 1, 177–206. MR 1892848, DOI https://doi.org/10.1007/s002220100193
- Hélène Esnault and Eckart Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992. MR 1193913
- Hélène Esnault, V. Srinivas, and Eckart Viehweg, The universal regular quotient of the Chow group of points on projective varieties, Invent. Math. 135 (1999), no. 3, 595–664. MR 1669284, DOI https://doi.org/10.1007/s002220050296
- M. Kerz, The Gersten Conjecture for Milnor $K$-theory, $K$-theory arxiv.
- Amalendu Krishna, Zero cycles on a threefold with isolated singularities, J. Reine Angew. Math. 594 (2006), 93–115. MR 2248153, DOI https://doi.org/10.1515/CRELLE.2006.036
- Amalendu Krishna, On $K_2$ of one-dimensional local rings, $K$-Theory 35 (2005), no. 1-2, 139–158. MR 2240218, DOI https://doi.org/10.1007/s10977-005-1510-6
- Amalendu Krishna and V. Srinivas, Zero-cycles and $K$-theory on normal surfaces, Ann. of Math. (2) 156 (2002), no. 1, 155–195. MR 1935844, DOI https://doi.org/10.2307/3597187
- Marc Levine, Zero-cycles and $K$-theory on singular varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 451–462. MR 927992
- Marc Levine, Relative Milnor $K$-theory, $K$-Theory 6 (1992), no. 2, 113–175. MR 1187704, DOI https://doi.org/10.1007/BF01771010
- Marc Levine and Chuck Weibel, Zero cycles and complete intersections on singular varieties, J. Reine Angew. Math. 359 (1985), 106–120. MR 794801
- Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- M. Pavaman Murthy, Zero cycles and projective modules, Ann. of Math. (2) 140 (1994), no. 2, 405–434. MR 1298718, DOI https://doi.org/10.2307/2118605
- Claudio Pedrini and Charles Weibel, Divisibility in the Chow group of zero-cycles on a singular surface, Astérisque 226 (1994), 10–11, 371–409. $K$-theory (Strasbourg, 1992). MR 1317125
- Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR 0257068
- A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294. MR 788411, DOI https://doi.org/10.1007/BF01388607
- C. Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math., 37, (1985), no. 3, 488-550.
- V. Srinivas, Zero cycles on a singular surface. II, J. Reine Angew. Math. 362 (1985), 4–27. MR 809963, DOI https://doi.org/10.1515/crll.1985.362.4
- V. Srinivas, Rational equivalence of $0$-cycles on normal varieties over ${\bf C}$, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 475–482. MR 927994
- Jan Stienstra, Cartier-Dieudonné theory for Chow groups, J. Reine Angew. Math. 355 (1985), 1–66. MR 772483, DOI https://doi.org/10.1515/crll.1985.355.1
- R. W. Thomason and T. Trobaugh, Higher Algebraic K-Theory Of Schemes And Of Derived Categories, The Grothendieck Festschrift III, Progress in Math. 88, Birkhauser.
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
- Charles Weibel, The negative $K$-theory of normal surfaces, Duke Math. J. 108 (2001), no. 1, 1–35. MR 1831819, DOI https://doi.org/10.1215/S0012-7094-01-10811-9
References
- M. André, Homologie des algèbres commutatives, Die Grundlehren der mathematischen Wissenschaften, Band 206, Springer-Verlag, Berlin-New York, 1974. MR 0352220 (50:4707)
- L. Barbieri-Viale, Zero-cycles on singular varieties: torsion and Bloch’s formula, J. Pure Appl. Alg., 78, (1992), 1-13. MR 1154894 (93b:14021)
- L. Barbieri-Viale, C. Pedrini, C. Weibel, Roitman’s Theorem for singular Varieties, Duke Math. J., 84, (1996), 155-190. MR 1394751 (97c:14004)
- H. Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam 1968. MR 0249491 (40:2736)
- J. Cathelineau, Lambda structures in algebraic $K$-theory, $K$-Theory, 4, (1991), 591-606.
- C. Consani, $K$-theory of blow-ups and vector bundles on the cone over a surface, $K$-Theory, 7, (1993), 269-284. MR 1244003 (94i:19005)
- K. Coombes, V. Srinivas, Relative $K$-theory and vector bundles on certain singular varieties, Invent. Math. 70 (1982/83), no. 1, 1-12. MR 679769 (84e:14015)
- G. Cortinas, The Obstruction to Excision in $K$-theory and in Cyclic Homology, Invent. Math., 164 (2006), no. 1, 143-173. MR 2207785 (2006k:19006)
- G. Cortinas, S. Geller, C. Weibel, Artinian Berger’s Conjecture, Math. Zeitschrift, 228, (1998), 569-588. MR 1637796 (99g:13035)
- P. Elvaz-Vincent, S. Muller-Stach, Milnor $K$-theory of rings, higher Chow groups and applications, Invent. Math., 148, (2002), 177-206. MR 1892848 (2003c:19001)
- H. Esnault, E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, 20, Birkhauser Verlag, Basel, 1992. MR 1193913 (94a:14017)
- H. Esnault, V. Srinivas, E. Viehweg, The Universal regular quotient of Chow group of points on projective varieties, Invent. Math., 135, (1999), 595-664. MR 1669284 (2000f:14012)
- M. Kerz, The Gersten Conjecture for Milnor $K$-theory, $K$-theory arxiv.
- A. Krishna, Zero cycles on a threefold with isolated singularities, J. Reine Angew. Math., 594 (2006), 93-115. MR 2248153 (2007m:14006)
- A. Krishna, On $K_ 2$ of one-dimensional local rings, $K$-Theory, 35 (2005), no. 1-2, 139-158. MR 2240218 (2007h:19003)
- A. Krishna, V. Srinivas, Zero Cycles and $K$-theory on Normal Surfaces, Ann. of Math., 156, (2002), 155-195. MR 1935844 (2003k:14005)
- M. Levine, Zero-Cycles and $K$-theory on Singular Varieties, Proc. Symp. Pure Math., AMS Providence, 46, (1987), 451-462. MR 927992 (89h:14005)
- M. Levine, Relative Milnor $K$-Theory, $K$-Theory, 6, (1992), 113-175. MR 1187704 (94b:19005)
- M. Levine, C. Weibel, Zero cycles and complete intersections on singular varieties, 359, (1985), 106-120. MR 794801 (86k:14003)
- J-L Loday, Cyclic Homology, Grund. der math. Wissen. Series, 301, Springer Verlag, 1998. MR 1600246 (98h:16014)
- J. P. May, Simplicial objects in Algebraic topology, D. Van Nostrand Company, Princeton, New Jersey, 1967. MR 0222892 (36:5942)
- M. P. Murthy, Zero cycles and projective modules, Ann. of Math., 140, (1994), no. 2, 405-434. MR 1298718 (96g:13010)
- C. Pedrini, C. A. Weibel, Divisibility In The Chow Group Of Zero-Cycles On a Singular Surface, Asterisque, 226, (1994), 371-409. MR 1317125 (96a:14011)
- D. Quillen, On the (Co-)homology of commutative rings, Proc. Symp. Pure Math., AMS Providence, 17, (1970), 65-87. MR 0257068 (41:1722)
- A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., 80, (1985), no. 2, 283-294. MR 788411 (87d:14044)
- C. Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math., 37, (1985), no. 3, 488-550.
- V. Srinivas, Zero cycles on a singular surface II, J. reine angew. Math., 362, (1985), 4-27. MR 809963 (87c:14009b)
- V. Srinivas, Rational Equivalence of $0$-Cycles on Normal Varieties, Proc. Symp. Pure Math., AMS Providence, 46, (1987), 475-482. MR 927994 (89e:14006)
- J. Stienstra, Cartier-Dieudonne theory for Chow groups. J. Reine Angew. Math., 355, (1985), 1-66. MR 772483 (88c:14026a)
- R. W. Thomason and T. Trobaugh, Higher Algebraic K-Theory Of Schemes And Of Derived Categories, The Grothendieck Festschrift III, Progress in Math. 88, Birkhauser.
- C. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)
- C. Weibel, Negative $K$-theory of normal surfaces, Duke Math. J., 108, (2001), 1-35. MR 1831819 (2002b:14012)
Additional Information
Amalendu Krishna
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 India
MR Author ID:
703987
Email:
amal@math.tifr.res.in
Received by editor(s):
May 31, 2008
Received by editor(s) in revised form:
September 28, 2008
Published electronically:
November 17, 2009