On the $p$-adic cohomology of some $p$-adically uniformized varieties
Author:
Elmar Grosse-Klönne
Journal:
J. Algebraic Geom. 20 (2011), 151-198
DOI:
https://doi.org/10.1090/S1056-3911-10-00541-2
Published electronically:
January 25, 2010
MathSciNet review:
2729278
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $K$ be a finite extension of ${\mathbb Q}_p$ and let $X$ be Drinfel$’$d’s symmetric space of dimension $d$ over $K$. Let $\Gamma \subset \operatorname {SL}_ {d+1}(K)$ be a cocompact discrete (torsionfree) subgroup and let ${{X}}_{\Gamma }=\Gamma \backslash {X}$, a smooth projective ${{K}}$-variety. In this paper we investigate the de Rham and log crystalline (log convergent) cohomology of local systems on $X_{\Gamma }$ arising from $K[\Gamma ]$-modules. (I) We prove the monodromy weight conjecture in this context. To do so we work out, for a general strictly semistable proper scheme of pure relative dimension $d$ over a cdvr of mixed characteristic, a rigid analytic description of the $d$-fold iterate of the monodromy operator acting on de Rham cohomology. (II) In cases of arithmetical interest we prove the (weak) admissibility of this cohomology (as a filtered $(\phi ,N)$-module) and the degeneration of the relevant Hodge spectral sequence.
References
- Y. André, Introduction to the theory of $p$-adic period mappings, in: Period mappings and differential equations. From ${\mathbb C}$ to ${\mathbb C}_p$, MSJ Memoirs, 12. Mathematical Society of Japan, Tokyo, 2003.
- Georgia Benkart, Manish Chakrabarti, Thomas Halverson, Robert Leduc, Chanyoung Lee, and Jeffrey Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529–567. MR 1280591, DOI https://doi.org/10.1006/jabr.1994.1166
- Christophe Breuil, Invariant $\scr L$ et série spéciale $p$-adique, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 4, 559–610 (French, with English and French summaries). MR 2097893, DOI https://doi.org/10.1016/j.ansens.2004.02.001
- Roger W. Carter and George Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193–242. MR 354887, DOI https://doi.org/10.1007/BF01214125
- Robert Coleman and Adrian Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171–215. MR 1682268, DOI https://doi.org/10.1215/S0012-7094-99-09708-9
- Jean François Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 1, 1–74 (French, with English and French summaries). MR 2224658, DOI https://doi.org/10.1016/j.ansens.2005.11.002
- Ehud de Shalit, The $p$-adic monodromy-weight conjecture for $p$-adically uniformized varieties, Compos. Math. 141 (2005), no. 1, 101–120. MR 2099771, DOI https://doi.org/10.1112/S0010437X04000594
- Christopher Deninger and Jacob Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR 1133323
- Gerd Faltings, Almost étale extensions, Astérisque 279 (2002), 185–270. Cohomologies $p$-adiques et applications arithmétiques, II. MR 1922831
- Howard Garland, $p$-adic curvature and the cohomology of discrete subgroups of $p$-adic groups, Ann. of Math. (2) 97 (1973), 375–423. MR 320180, DOI https://doi.org/10.2307/1970829
- Elmar Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfel′d’s symmetric space, J. Algebraic Geom. 14 (2005), no. 3, 391–437. MR 2129006, DOI https://doi.org/10.1090/S1056-3911-05-00402-9
- E. Grosse-Klönne, The Cech filtration and monodromy in log crystalline cohomology, Transactions of the AMS.
- Elmar Grosse-Klönne, Sheaves of bounded $p$-adic logarithmic differential forms, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 351–386 (English, with English and French summaries). MR 2493385, DOI https://doi.org/10.1016/j.ansens.2007.04.001
- Michael Harris, Supercuspidal representations in the cohomology of Drinfel′d upper half spaces; elaboration of Carayol’s program, Invent. Math. 129 (1997), no. 1, 75–119. MR 1464867, DOI https://doi.org/10.1007/s002220050159
- Adrian Iovita and Michael Spiess, Logarithmic differential forms on $p$-adic symmetric spaces, Duke Math. J. 110 (2001), no. 2, 253–278. MR 1865241, DOI https://doi.org/10.1215/S0012-7094-01-11023-5
- Adrian Iovita and Michael Spieß, Derivatives of $p$-adic $L$-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), no. 2, 333–384. MR 2013784, DOI https://doi.org/10.1007/s00222-003-0306-7
- Tetsushi Ito, Weight-monodromy conjecture for $p$-adically uniformized varieties, Invent. Math. 159 (2005), no. 3, 607–656. MR 2125735, DOI https://doi.org/10.1007/s00222-004-0395-y
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
- A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), no. 2, 301–337 (French). MR 1248675, DOI https://doi.org/10.1215/S0012-7094-93-07211-0
- G. A. Mustafin, Non-Archimedean uniformization, Math. USSR Sbornik 34 (1987), 187–214.
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439
- Arthur Ogus, $F$-isocrystals and de Rham cohomology. II. Convergent isocrystals, Duke Math. J. 51 (1984), no. 4, 765–850. MR 771383, DOI https://doi.org/10.1215/S0012-7094-84-05136-6
- Arthur Ogus, The convergent topos in characteristic $p$, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 133–162. MR 1106913, DOI https://doi.org/10.1007/978-0-8176-4576-2_5
- Sascha Orlik, Equivariant vector bundles on Drinfeld’s upper half space, Invent. Math. 172 (2008), no. 3, 585–656. MR 2393081, DOI https://doi.org/10.1007/s00222-008-0112-3
- Peter Schneider, The cohomology of local systems on $p$-adically uniformized varieties, Math. Ann. 293 (1992), no. 4, 623–650. MR 1176024, DOI https://doi.org/10.1007/BF01444738
- Peter Schneider and Jeremy Teitelbaum, An integral transform for $p$-adic symmetric spaces, Duke Math. J. 86 (1997), no. 3, 391–433. MR 1432303, DOI https://doi.org/10.1215/S0012-7094-97-08612-9
- Atsushi Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), no. 4, 509–656. MR 1800845
- Atsushi Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), no. 1, 1–163. MR 1889223
- A. Shiho, Relative log convergent cohomology and relative rigid cohomology I + II + III, arXiv:0707.1742 and arXiv:0707.1743 and arXiv:0805.3229
- Takeshi Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), no. 2, 233–411. MR 1705837, DOI https://doi.org/10.1007/s002220050330
References
- Y. André, Introduction to the theory of $p$-adic period mappings, in: Period mappings and differential equations. From ${\mathbb C}$ to ${\mathbb C}_p$, MSJ Memoirs, 12. Mathematical Society of Japan, Tokyo, 2003.
- G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994), no. 3, 529–567. MR 1280591 (95d:20071)
- C. Breuil, Invariant $L$ et série spéciale $p$-adique, Ann. Scient. de l’E.N.S. 37, 2004, 559-610. MR 2097893 (2005j:11039)
- R. W. Carter, G. Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193–242. MR 0354887 (50:7364)
- R. Coleman, A. Iovita, The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J. 97 (1999), no. 1, 171–215. MR 1682268 (2000e:14023)
- J.-F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Scient. Éc. Norm. Sup. 39 (1); 1-74 (2006). MR 2224658 (2007j:22026)
- E. de Shalit, The $p$-adic monodromy-weight conjecture for $p$-adically uniformized varieties, Compos. Math. 141 (2005), no. 1, 101–120. MR 2099771 (2005h:14049)
- C. Deninger and J. Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR 1133323 (92m:14055)
- G. Faltings, Almost étale extensions. Cohomologies $p$-adiques et applications arithmétiques, II. Astérisque 279 (2002), 185–270. MR 1922831 (2003m:14031)
- H. Garland, $p$-adic curvature and the cohomology of discrete subgroups of $p$-adic groups. Ann. of Math. (2) 97 (1973), 375–423. MR 0320180 (47:8719)
- E. Grosse-Klönne, Frobenius and Monodromy operators in rigid analysis, and Drinfel$’$d’s symmetric space, J. Algebraic Geom. 14 (2005), 391–437. MR 2129006 (2005m:14040)
- E. Grosse-Klönne, The Cech filtration and monodromy in log crystalline cohomology, Transactions of the AMS.
- E. Grosse-Klönne, Sheaves of bounded $p$-adic logarithmic differential forms. Ann. Sci. ENS (4) 40, No.3, 351 – 386 (2007). MR 2493385
- M. Harris, Supercuspidal representations in the cohomology of Drinfel$’$d upper half spaces; elaboration of Carayol’s program, Invent. Math. 129 (1997), 75–119. MR 1464867 (98i:11100)
- A. Iovita and M. Spiess, Logarithmic differential forms on $p$-adic symmetric spaces, Duke Math. J. 110 (2001), no.2, 253–278. MR 1865241 (2002j:11055)
- A. Iovita and M. Spiess, Derivatives of $p$-adic $L$-functions, Heegener cycles and monodromy modules attached to modular forms, Invent. Math. 154 (2003), no.2, 333–384. MR 2013784 (2004i:11063)
- T. Ito, Weight-monodromy conjecture for $p$-adically uniformized varieties, Invent. Math. 159 (2005), no. 3, 607–656. MR 2125735 (2005m:14033)
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Bd. 17, Springer-Verlag, Berlin (1991). MR 1090825 (92h:22021)
- A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke Math. J. 72 (1993), 301–337. MR 1248675 (95a:14022)
- G. A. Mustafin, Non-Archimedean uniformization, Math. USSR Sbornik 34 (1987), 187–214.
- M. Rapoport and T. Zink, Period spaces for $p$-divisible groups, Annals of Math. Studies 141, Princeton Univ. Press (1996). MR 1393439 (97f:14023)
- A. Ogus, $F$-isocrystals and de Rham cohomology. II. Convergent isocrystals, Duke Math. J. 51 (1984), no. 4, 765–850. MR 771383 (86j:14012)
- A. Ogus, The convergent topos in characteristic $p$. The Grothendieck Festschrift, Vol. III, 133–162, Progr. Math. 88, Birkhäuser, Boston, MA (1990). MR 1106913 (92b:14011)
- S. Orlik, Equivariant vector bundles on Drinfeld’s upper half space, Inventiones mathematicae 172 (2008), 585 - 656. MR 2393081 (2009c:22019)
- P. Schneider, The cohomology of local systems on $p$-adically uniformized varieties, Math. Ann. 293 (1992), 623–650. MR 1176024 (93k:14032)
- P. Schneider, J. Teitelbaum, An integral transform for $p$-adic symmetric spaces, Duke Math. J. 86, 391-433 (1997). MR 1432303 (98c:11048)
- A. Shiho, Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site, J. Math. Sci. Univ. Tokyo 7 (2000), no. 4, 509–656. MR 1800845 (2002e:14031)
- A. Shiho, Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), no. 1, 1–163. MR 1889223 (2003c:14020)
- A. Shiho, Relative log convergent cohomology and relative rigid cohomology I + II + III, arXiv:0707.1742 and arXiv:0707.1743 and arXiv:0805.3229
- T. Tsuji, $p$-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math 137 (1999), 233–411. MR 1705837 (2000m:14024)
Additional Information
Elmar Grosse-Klönne
Affiliation:
Humboldt-Universität zu Berlin, Institut für Mathematik, Rudower Chaussee 25, 12489 Berlin, Germany
Email:
gkloenne@math.hu-berlin.de
Received by editor(s):
August 31, 2008
Received by editor(s) in revised form:
April 21, 2009
Published electronically:
January 25, 2010
Communicated by:
John Coates