Deformation subspaces of $p$-divisible groups as formal Lie groups associated to $p$-divisible groups
Author:
Adrian Vasiu
Journal:
J. Algebraic Geom. 20 (2011), 1-45
DOI:
https://doi.org/10.1090/S1056-3911-2010-00571-1
Published electronically:
September 9, 2010
MathSciNet review:
2729274
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $k$ be an algebraically closed field of characteristic $p>0$. Let $D$ be a $p$-divisible group over $k$ which is not isoclinic. Let $\mathcal {D}$ (resp. $\mathcal {D}_{k}$) be the formal deformation space of $D$ over $\text {Spf}(W(k))$ (resp. over $\text {Spf}(k)$). We use axioms to construct formal subschemes $\mathcal {G}_{k}$ of $\mathcal {D}_{k}$ that: (i) have canonical structures of formal Lie groups over $\text {Spf}(k)$ associated to $p$-divisible groups over $k$, and (ii) give birth, via all geometric points $\text {Spf}(K)\to \mathcal {G}_{k}$, to $p$-divisible groups over $K$ that are isomorphic to $D_{K}$. We also identify when there exist formal subschemes $\mathcal {G}$ of $\mathcal {D}$ which lift $\mathcal {G}_{k}$ and which have natural structures of formal Lie groups over $\text {Spf}(W(k))$ associated to $p$-divisible groups over $W(k)$. Applications to Traverso (ultimate) stratifications are included as well.
References
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Pierre Berthelot and William Messing, Théorie de Dieudonné cristalline. III. Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 173–247 (French). MR 1086886
- Ching-Li Chai, Hecke orbits on Siegel modular varieties, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 71–107. MR 2159378, DOI https://doi.org/10.1007/0-8176-4417-2_4
- C.-L. Chai, Canonical coordinates on leaves of p-divisible groups: The two-slope case, 77 pages manuscript dated 01/10/2005.
- P. Deligne, Cristaux ordinaires et coordonnées canoniques, Algebraic surfaces (Orsay, 1976–78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 80–137 (French). With the collaboration of L. Illusie; With an appendix by Nicholas M. Katz. MR 638599
- Jean Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractéristique $p>0$. VII, Math. Ann. 134 (1957), 114–133 (French). MR 98146, DOI https://doi.org/10.1007/BF01342790
- Gerd Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), no. 1, 117–144. MR 1618483, DOI https://doi.org/10.1090/S0894-0347-99-00273-8
- Jean-Marc Fontaine, Groupes $p$-divisibles sur les corps locaux, Société Mathématique de France, Paris, 1977 (French). Astérisque, No. 47-48. MR 0498610
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Luc Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque 127 (1985), 151–198 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801922
- Nicholas M. Katz, Slope filtration of $F$-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463
- N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 138–202. MR 638600
- Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 3–90 (Russian). MR 0157972
- William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 0347836
- James S. Milne, The points on a Shimura variety modulo a prime of good reduction, The zeta functions of Picard modular surfaces, Univ. Montréal, Montreal, QC, 1992, pp. 151–253. MR 1155229
- J. S. Milne, Shimura varieties and motives, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 447–523. MR 1265562, DOI https://doi.org/10.4310/pamq.2009.v5.n4.a3
- Ben Moonen, Linearity properties of Shimura varieties. II, Compositio Math. 114 (1998), no. 1, 3–35. MR 1648527, DOI https://doi.org/10.1023/A%3A1000411631772
- M.-H. Nicole, A. Vasiu, and T. Wedhorn, Purity of level $m$ stratifications, Ann. Sci. École Norm. Sup. (4) 43 (2010), no. 6.
- Frans Oort, Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), no. 2, 267–296. MR 2051612, DOI https://doi.org/10.1090/S0894-0347-04-00449-7
- J. T. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966) Springer, Berlin, 1967, pp. 158–183. MR 0231827
- Carlo Traverso, $p$-divisible groups over fields, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971) Academic Press, London, 1973, pp. 45–65. MR 0344262
- Adrian Vasiu, Integral canonical models of Shimura varieties of preabelian type, Asian J. Math. 3 (1999), no. 2, 401–518. MR 1796512, DOI https://doi.org/10.4310/AJM.1999.v3.n2.a8
- Adrian Vasiu, Crystalline boundedness principle, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 245–300 (English, with English and French summaries). MR 2245533, DOI https://doi.org/10.1016/j.ansens.2005.12.003
- Adrian Vasiu, Level $m$ stratifications of versal deformations of $p$-divisible groups, J. Algebraic Geom. 17 (2008), no. 4, 599–641. MR 2424922, DOI https://doi.org/10.1090/S1056-3911-08-00495-5
- A. Vasiu, Generalized Serre–Tate ordinary theory, manuscript math.NT/0208216.
- Jean-Pierre Wintenberger, Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux, Ann. of Math. (2) 119 (1984), no. 3, 511–548 (French). MR 744862, DOI https://doi.org/10.2307/2007084
References
- A. Borel, Linear algebraic groups. Second edition, Grad. Texts in Math., Vol. 126, Springer-Verlag, New York, 1991. MR 1102012 (92d:20001)
- P. Berthelot and W. Messing, Théorie de Dieudonné crystalline III, in the Grothendieck Festschrift I, Progr. Math., Vol. 86, 173–247, Birkhäuser, Basel, 1990. MR 1086886 (92h:14012)
- C.-L. Chai, Hecke orbits on Siegel modular varieties, Geometric methods in algebra and number theory, 71–107, Progr. Math., Vol. 235, Birkhäuser Boston, Boston, MA, 2005. MR 2159378 (2006f:11050)
- C.-L. Chai, Canonical coordinates on leaves of p-divisible groups: The two-slope case, 77 pages manuscript dated 01/10/2005.
- P. Deligne, Cristaux ordinaires et coordonées canoniques, Lecture Notes in Math., Vol. 868, 80–137, Springer-Verlag, 1981. MR 638599 (83k:14039a)
- J. Dieudonné, Groupes de Lie et hyperalgèbres de Lie sur un corps de caractérisque $p>0$ (VII), Math. Annalen 134 (1957), 114–133. MR 0098146 (20:4608)
- G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), no. 1, 117–144. MR 1618483 (99e:14022)
- J.-M. Fontaine, Groupes $p$-divisibles sur les corps locaux, J. Astérisque 47/48, Soc. Math. de France, Paris, 1977. MR 0498610 (58:16699)
- M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, Vol. 151. Princeton University Press, Princeton, NJ, 2001. MR 1876802 (2002m:11050)
- L. Illusie, Déformations des groupes de Barsotti–Tate (d’après A. Grothendieck), Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84), 151–198, J. Astérisque 127, Soc. Math. de France, Paris, 1985. MR 801922
- N. Katz, Slope filtration of $F$-crystals, Journées de Géométrie algébrique de Rennes 1978, J. Astérisque, Vol. 63, Part 1, 113–163, Soc. Math. de France, Paris, 1979. MR 563463 (81i:14014)
- N. Katz, Appendix to Exp. V, Lecture Notes in Math., Vol. 868, 128–137, Springer-Verlag, 1981. MR 638600 (83k:14039b)
- J. I. Manin, The theory of formal commutative groups in finite characteristic, Russian Math. Surv. 18 (1963), no. 6, 1–83. MR 0157972 (28:1200)
- W. Messing, The crystals associated to Barsotti–Tate groups, with applications to abelian schemes, Lecture Notes in Math., Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 0347836 (50:337)
- J. S. Milne, The points on a Shimura variety modulo a prime of good reduction, The Zeta functions of Picard modular surfaces, 153–255, Univ. Montréal Press, Montreal, Quebec, 1992. MR 1155229 (94g:11041)
- J. S. Milne, Shimura varieties and motives, Motives (Seattle, WA, 1991), 447–523, Proc. Sympos. Pure Math., Vol. 55, Part 2, Amer. Math. Soc., Providence, RI, 1994. MR 1265562 (95c:11076)
- B. Moonen, Linearity properties of Shimura varieties. II, Compos. Math. 114 (1998), no. 1, 3–35. MR 1648527 (99k:14039)
- M.-H. Nicole, A. Vasiu, and T. Wedhorn, Purity of level $m$ stratifications, Ann. Sci. École Norm. Sup. (4) 43 (2010), no. 6.
- F. Oort, Foliations in moduli spaces of abelian varieties and dimension of leaves, Algebra, arithmetic, and geometry, in honor of Yu. I. Manin, Vol. II, 465–501, Progr. Math. 270, Birkhäuser, Boston, Inc., Boston, MA, 2009. MR 2051612 (2005c:14051)
- J. Tate, $p$-divisible groups, Proc. Conf. Local Fields (Driebergen, 1966), 158–183 Springer, Berlin, 1967. MR 0231827 (38:155)
- C. Traverso, $p$-divisible groups over fields, Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), 45–65, Academic Press, London, 1973. MR 0344262 (49:9001)
- A. Vasiu, Integral canonical models of Shimura varieties of preabelian type, Asian J. Math. 3 (1999), no. 2, 401–518. MR 1796512 (2002b:11087)
- A. Vasiu, Crystalline Boundedness Principle, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 245–300. MR 2245533 (2007d:14081)
- A. Vasiu, Level $m$ stratifications of versal deformations of $p$-divisible groups, J. Alg. Geom. 17 (2008), no. 4, 599–641. MR 2424922 (2009h:14078)
- A. Vasiu, Generalized Serre–Tate ordinary theory, manuscript math.NT/0208216.
- J.-P. Wintenberger, Un scindage de la filtration de Hodge pour certaines variétés algébriques sur les corps locaux, Ann. of Math. (2) 119, (1984), no. 3, 511–548. MR 744862 (86k:14015)
Additional Information
Adrian Vasiu
Affiliation:
Department of Mathematical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902-6000
Email:
adrian@math.binghamton.edu
Received by editor(s):
April 23, 2008
Received by editor(s) in revised form:
November 12, 2009
Published electronically:
September 9, 2010
Additional Notes:
This project was partially supported by the NSF grant DMS #0900967.