Stringy Hodge numbers of strictly canonical nondegenerate singularities
Author:
Jan Schepers
Journal:
J. Algebraic Geom. 21 (2012), 273-297
DOI:
https://doi.org/10.1090/S1056-3911-2011-00546-8
Published electronically:
March 28, 2011
MathSciNet review:
2877435
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We describe a class of isolated nondegenerate hypersurface singularities that give a polynomial contribution to Batyrev’s stringy $E$-function. These singularities are obtained by imposing a natural condition on the facets of the Newton polyhedron, and they are strictly canonical. We prove that Batyrev’s conjecture concerning the nonnegativity of stringy Hodge numbers is true for complete varieties with such singularities, under some additional hypotheses on the defining polynomials (e.g. convenient or weighted homogeneous). The proof uses combinatorics on lattice polytopes. The results form a strong generalisation of previously obtained results for Brieskorn singularities.
References
- Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535. MR 1269718
- Victor V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 1–32. MR 1672108
- Victor V. Batyrev and Lev A. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent. Math. 126 (1996), no. 1, 183–203. MR 1408560, DOI https://doi.org/10.1007/s002220050093
- Victor Batyrev and Benjamin Nill, Combinatorial aspects of mirror symmetry, Integer points in polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, Contemp. Math., vol. 452, Amer. Math. Soc., Providence, RI, 2008, pp. 35–66. MR 2405763, DOI https://doi.org/10.1090/conm/452/08770
- Lev A. Borisov and Anvar R. Mavlyutov, String cohomology of Calabi-Yau hypersurfaces via mirror symmetry, Adv. Math. 180 (2003), no. 1, 355–390. MR 2019228, DOI https://doi.org/10.1016/S0001-8708%2803%2900007-0
- Tom Braden and Robert MacPherson, Intersection homology of toric varieties and a conjecture of Kalai, Comment. Math. Helv. 74 (1999), no. 3, 442–455. MR 1710686, DOI https://doi.org/10.1007/s000140050098
- W. Bruns and B. Ichim, Normaliz 2.0, available on http://www.mathematik. uni-osnabrueck.de/normaliz/.
- Jan Denef and Kathleen Hoornaert, Newton polyhedra and Igusa’s local zeta function, J. Number Theory 89 (2001), no. 1, 31–64. MR 1838703, DOI https://doi.org/10.1006/jnth.2000.2606
- Mircea Mustaţǎ and Sam Payne, Ehrhart polynomials and stringy Betti numbers, Math. Ann. 333 (2005), no. 4, 787–795. MR 2195143, DOI https://doi.org/10.1007/s00208-005-0691-x
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963
- Jan Schepers, On the hard Lefschetz property of stringy Hodge numbers, J. Algebra 321 (2009), no. 2, 394–403. MR 2483273, DOI https://doi.org/10.1016/j.jalgebra.2008.10.010
- Jan Schepers and Willem Veys, Stringy Hodge numbers for a class of isolated singularities and for threefolds, Int. Math. Res. Not. IMRN 2 (2007), Art. ID rnm016, 14. MR 2361454, DOI https://doi.org/10.1093/imrn/rnm016
- Jan Schepers and Willem Veys, Stringy $E$-functions of hypersurfaces and of Brieskorn singularities, Adv. Geom. 9 (2009), no. 2, 199–217. MR 2523840, DOI https://doi.org/10.1515/ADVGEOM.2009.013
- Richard Stanley, Generalized $H$-vectors, intersection cohomology of toric varieties, and related results, Commutative algebra and combinatorics (Kyoto, 1985) Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 187–213. MR 951205, DOI https://doi.org/10.2969/aspm/01110187
- Richard P. Stanley, Subdivisions and local $h$-vectors, J. Amer. Math. Soc. 5 (1992), no. 4, 805–851. MR 1157293, DOI https://doi.org/10.1090/S0894-0347-1992-1157293-9
- Richard P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR 1442260
- D. A. Stepanov, Combinatorial structure of exceptional sets in resolutions of singularities, arXiv:math/0611903v1 [math.AG].
- A. N. Varchenko, Zeta-function of monodromy and Newton’s diagram, Invent. Math. 37 (1976), no. 3, 253–262. MR 424806, DOI https://doi.org/10.1007/BF01390323
- Takehiko Yasuda, Twisted jets, motivic measures and orbifold cohomology, Compos. Math. 140 (2004), no. 2, 396–422. MR 2027195, DOI https://doi.org/10.1112/S0010437X03000368
References
- V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535. MR 1269718 (95c:14046)
- V. V. Batyrev, Stringy Hodge numbers of varieties with Gorenstein canonical singularities, Proc. Taniguchi Symposium 1997, In ‘Integrable Systems and Algebraic Geometry, Kobe/Kyoto 1997’, World Sci. Publ. (1999), 1-32. MR 1672108 (2001a:14039)
- V. V. Batyrev and L. A. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent. Math. 126 (1996), 183-203. MR 1408560 (97k:14039)
- V. V. Batyrev and B. Nill, Combinatorial aspects of mirror symmetry, in ‘Integer points in polyhedra - geometry, number theory, representation theory, algebra, optimization, statistics’, Contemp. Math. 452 (2008), 35-66. MR 2405763
- L. A. Borisov and A. R. Mavlyutov, String cohomology of Calabi-Yau hypersurfaces via mirror symmetry, Adv. Math. 180 (2003), 355-390. MR 2019228 (2005b:32056)
- T. Braden and R. MacPherson, Intersection homology of toric varieties and a conjecture of Kalai, Comment. Math. Helv. 74 (1999), 442-455. MR 1710686 (2000h:14018)
- W. Bruns and B. Ichim, Normaliz 2.0, available on http://www.mathematik. uni-osnabrueck.de/normaliz/.
- J. Denef and K. Hoornaert, Newton polyhedra and Igusa’s local zeta function, J. Number Theory 89 (2001), 31-64. MR 1838703 (2002g:11170)
- M. Mustaţă and S. Payne, Ehrhart polynomials and stringy Betti numbers, Math. Ann. 333 (2005), 787-795. MR 2195143 (2007c:14055)
- M. Reid, Canonical 3-folds, in ‘Journées de géométrie algébrique d’Angers 1979’, Sijthoff & Noordhoff (1980), 273-310. MR 605348 (82i:14025)
- M. Reid, Young person’s guide to canonical singularities, Algebraic Geometry Bowdoin 1985, Proc. Sympos. Pure Math., Vol. 46 Part 1 (1987), 345-414. MR 927963 (89b:14016)
- J. Schepers, On the Hard Lefschetz property of stringy Hodge numbers, J. Algebra 321 (2009), 394-403. MR 2483273
- J. Schepers and W. Veys, Stringy Hodge numbers for a class of isolated singularities and for threefolds, Int. Math. Res. Not., Vol. 2007, article ID rnm016, 14 pages. MR 2361454 (2009e:32033)
- J. Schepers and W. Veys, Stringy $E$-functions of hypersurfaces and of Brieskorn singularities, Adv. Geom. 9 (2009), 199-217. MR 2523840
- R. Stanley, Generalized $H$-Vectors, Intersection Cohomology of Toric Varieties, and Related Results, Commutative Algebra and Combinatorics (Kyoto, 1985), Adv. Stud. Pure Math. 11 (1987), 187-213. MR 951205 (89f:52016)
- R. Stanley, Subdivisions and local $h$-vectors, J. Amer. Math. Soc. 5 (1992), 805-851. MR 1157293 (93b:52012)
- R. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics 49, Cambridge University Press (1997). MR 1442260 (98a:05001)
- D. A. Stepanov, Combinatorial structure of exceptional sets in resolutions of singularities, arXiv:math/0611903v1 [math.AG].
- A. N. Varchenko, Zeta-Function of Monodromy and Newton’s Diagram, Invent. Math. 37 (1976), 253-262. MR 0424806 (54:12764)
- T. Yasuda, Twisted jets, motivic measures and orbifold cohomology, Compos. Math. 240 (2004), 396-422. MR 2027195 (2004m:14037)
Additional Information
Jan Schepers
Affiliation:
K.U.Leuven, Department of Mathematics, Celestijnenlaan 200B, B-3001 Leuven, Belgium
Email:
janschepers1@gmail.com
Received by editor(s):
April 30, 2009
Received by editor(s) in revised form:
August 28, 2009
Published electronically:
March 28, 2011
Additional Notes:
Supported by VICI grant 639.033.402 from the Netherlands Organisation for Scientific Research (NWO). During the completion of this paper, the author was a Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Part of this work was carried out during a stay at the Institut des Hautes Études Scientifiques (IHÉS). I am very grateful that I was given the opportunity to work there.
Dedicated:
Dedicated to Joost van Hamel