$R$-equivalence on low degree complete intersections
Author:
Alena Pirutka
Journal:
J. Algebraic Geom. 21 (2012), 707-719
DOI:
https://doi.org/10.1090/S1056-3911-2011-00581-X
Published electronically:
November 9, 2011
MathSciNet review:
2957693
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $k$ be a function field in one variable over $\mathbb C$ or the field $\mathbb C((t))$. Let $X$ be a $k$-rationally simply connected variety defined over $k$. In this paper we show that $R$-equivalence on rational points of $X$ is trivial and that the Chow group of zero-cycles of degree zero $A_0(X)$ is zero. In particular, this holds for a smooth complete intersection of $r$ hypersurfaces in $\mathbb P^n_k$ of respective degrees $d_1,\ldots ,d_r$ with $\sum \limits _{i=1}^{r}d_i^2\leq n+1$.
References
- Carolina Araujo and János Kollár, Rational curves on varieties, Higher dimensional varieties and rational points (Budapest, 2001) Bolyai Soc. Math. Stud., vol. 12, Springer, Berlin, 2003, pp. 13–68. MR 2011743, DOI https://doi.org/10.1007/978-3-662-05123-8_3
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545 (French). MR 1191735
- J.-L. Colliot-Thélène, Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences, in “Arithmetic Algebraic Geometry, Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10–15, 2007”, 1–44, Lecture Notes in Mathematics 2009, Springer-Verlag, Berlin, Heidelberg, 2011.
- Jean-Louis Colliot-Thélène, Hilbert’s Theorem 90 for $K_{2}$, with application to the Chow groups of rational surfaces, Invent. Math. 71 (1983), no. 1, 1–20. MR 688259, DOI https://doi.org/10.1007/BF01393336
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280
- Jean-Louis Colliot-Thélène, Jean-Jacques Sansuc, and Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I, J. Reine Angew. Math. 373 (1987), 37–107. MR 870307
- J.-L. Colliot-Thélène and A. N. Skorobogatov, $R$-equivalence on conic bundles of degree $4$, Duke Math. J. 54 (1987), no. 2, 671–677. MR 899411, DOI https://doi.org/10.1215/S0012-7094-87-05429-9
- A.J. de Jong and J. Starr, Low degree complete intersections are rationally simply connected, preprint, 2006, available at http://www.math.sunysb.edu/$\sim$ jstarr/papers/nk1006g.pdf
- P. Dèbes, J.-C. Douai, and M. Emsalem, Families de Hurwitz et cohomologie non abélienne, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 1, 113–149 (French, with English and French summaries). MR 1762340
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45–96. MR 1492534, DOI https://doi.org/10.1090/pspum/062.2/1492534
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI https://doi.org/10.1090/S0894-0347-02-00402-2
- Marvin J. Greenberg, Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 59–64. MR 207700
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- János Kollár, Rationally connected varieties over local fields, Ann. of Math. (2) 150 (1999), no. 1, 357–367. MR 1715330, DOI https://doi.org/10.2307/121107
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503
- M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244
- Max Lieblich, Deformation theory and rational points on rationally connected varieties, Quadratic forms, linear algebraic groups, and cohomology, Dev. Math., vol. 18, Springer, New York, 2010, pp. 83–108. MR 2648721, DOI https://doi.org/10.1007/978-1-4419-6211-9_5
- David A. Madore, Équivalence rationnelle sur les hypersurfaces cubiques de mauvaise réduction, J. Number Theory 128 (2008), no. 4, 926–944 (French, with English and French summaries). MR 2400051, DOI https://doi.org/10.1016/j.jnt.2007.03.009
- Yu. I. Manin, Kubicheskie formy: algebra, geometriya, arifmetika, Izdat. “Nauka”, Moscow, 1972 (Russian). MR 0360592
- Kapil H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. (2) 139 (1994), no. 3, 641–660. MR 1283872, DOI https://doi.org/10.2307/2118574
- J. Starr, Rational points of rationally simply connected varieties, preprint, 2009, available at http://www.math.sunysb.edu/$\sim$ jstarr/papers/s$\_$01$\_$09a$\_$nocomment.pdf
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456
References
- C. Araujo and J. Kollár, Rational curves on varieties, in “Higher dimensional varieties and rational points” (Budapest, 2001), 13–68, Bolyai Soc. Math. Stud., 12, Springer, Berlin, 2003. MR 2011743 (2004k:14049)
- S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Springer-Verlag, Berlin, 1990. MR 1045822 (91i:14034)
- F. Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 539–545. MR 1191735 (93k:14050)
- J.-L. Colliot-Thélène, Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences, in “Arithmetic Algebraic Geometry, Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10–15, 2007”, 1–44, Lecture Notes in Mathematics 2009, Springer-Verlag, Berlin, Heidelberg, 2011.
- J.-L. Colliot-Thélène, Hilbert’s theorem $90$ for $K_ {2}$, with application to the Chow groups of rational surfaces, Invent. math. 71 (1983), no. 1, 1–20. MR 688259 (85d:14016)
- J.-L. Colliot-Thélène et J.-J. Sansuc, La R-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229. MR 0450280 (56:8576)
- J.-L. Colliot-Thélène, J.-J. Sansuc and Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces, I, J. für die reine und angew. Math. (Crelle) 373 (1987), 37–107; II, ibid. 374 (1987), 72–168. MR 870307 (88m:11045a)
- J.-L. Colliot-Thélène and A. N. Skorobogatov, R-equivalence on conic bundles of degree 4, Duke Math. J. 54 (1987), no. 2, 671–677. MR 899411 (88i:14032)
- A.J. de Jong and J. Starr, Low degree complete intersections are rationally simply connected, preprint, 2006, available at http://www.math.sunysb.edu/$\sim$ jstarr/papers/nk1006g.pdf
- P. Dèbes, J.-C. Douai et M. Emsalem, Familles de Hurwitz et cohomologie non abélienne, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 1, 113–149. MR 1762340 (2002e:14018)
- W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, Algebraic geometry–Santa Cruz, 1995, 45–96, Proc. Sympos. Pure Math. 62, Part 2, Amer. Math. Soc., Providence, RI, 1997. MR 1492534 (98m:14025)
- T. Graber, J. Harris and J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199 (2003m:14081)
- M.J. Greenberg, Rational points in Henselian discrete valuation rings, Publ. Math. I.H.É.S. 31 (1966), 59–64. MR 0207700 (34:7515)
- J. Kollár, Rational curves on algebraic varieties, Springer-Verlag, Berlin, 1996. MR 1440180 (98c:14001)
- J. Kollár, Rationally connected varieties over local fields, Annals of Math. 150 (1999), no. 1, 357–367. MR 1715330 (2000h:14019)
- J. Kollár, Y. Miyaoka and S. Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625 (93i:14014)
- J. Kollár, Y. Miyaoka and S. Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992), no. 3, 765–779. MR 1189503 (94g:14021)
- M. Kontsevich and Yu. I. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525–562. MR 1291244 (95i:14049)
- M. Lieblich, Deformation theory and rational points on rationally connected varieties, in “Quadratic forms, linear algebraic groups, and cohomology”, 83–108, Dev. Math., 18, Springer, New York, 2010. MR 2648721
- D. Madore, Équivalence rationnelle sur les hypersurfaces cubiques de mauvaise réduction, J. Number Theory 128 (2008), no. 4, 926–944. MR 2400051 (2009c:14016)
- Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, Izdat. “Nauka”, Moscow, 1972. MR 0360592 (50:13040)
- K. H. Paranjape, Cohomological and cycle-theoretic connectivity, Ann. of Math. 140 (1994), 641–660. MR 1283872 (95g:14008)
- J. Starr, Rational points of rationally simply connected varieties, preprint, 2009, available at http://www.math.sunysb.edu/$\sim$ jstarr/papers/s$\_$01$\_$09a$\_$nocomment.pdf
- C. Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours spécialisés, 10, Société Mathématique de France, Paris, 2002. MR 1988456 (2005c:32024a)
Additional Information
Alena Pirutka
Affiliation:
École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France
MR Author ID:
934651
Email:
alena.pirutka@ens.fr
Received by editor(s):
December 4, 2009
Received by editor(s) in revised form:
November 23, 2010
Published electronically:
November 9, 2011