$K$-theory of cones of smooth varieties
Authors:
G. Cortiñas, C. Haesemeyer, M. E. Walker and C. Weibel
Journal:
J. Algebraic Geom. 22 (2013), 13-34
DOI:
https://doi.org/10.1090/S1056-3911-2011-00583-3
Published electronically:
December 27, 2011
MathSciNet review:
2993045
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $R$ be the homogeneous coordinate ring of a smooth projective variety $X$ over a field $k$ of characteristic 0. We calculate the $K$-theory of $R$ in terms of the geometry of the projective embedding of $X$. In particular, if $X$ is a curve, then we calculate $K_0(R)$ and $K_1(R)$, and prove that $K_{-1}(R)=\bigoplus H^1(C,\mathcal {O}(n))$. The formula for $K_0(R)$ involves the Zariski cohomology of twisted Kähler differentials on the variety.
References
- G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel, Cyclic homology, cdh-cohomology and negative $K$-theory, Ann. of Math. (2) 167 (2008), no. 2, 549–573. MR 2415380, DOI https://doi.org/10.4007/annals.2008.167.549
- G. Cortiñas, C. Haesemeyer, and C. Weibel, $K$-regularity, $cdh$-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc. 21 (2008), no. 2, 547–561. MR 2373359, DOI https://doi.org/10.1090/S0894-0347-07-00571-1
- G. Cortiñas, C. Haesemeyer, and C. A. Weibel, Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann. 344 (2009), no. 4, 891–922. MR 2507630, DOI https://doi.org/10.1007/s00208-009-0333-9
- G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, Bass’ $NK$ groups and cdh-fibrant Hochschild homology, Invent. Math. 181 (2010), no. 2, 421–448. MR 2657430, DOI https://doi.org/10.1007/s00222-010-0253-z
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- S. Geller, L. Reid, and C. Weibel, The cyclic homology and $K$-theory of curves, J. Reine Angew. Math. 393 (1989), 39–90. MR 972360, DOI https://doi.org/10.1515/crll.1989.393.39
- Shigeru Iitaka, Algebraic geometry, Graduate Texts in Mathematics, vol. 76, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; North-Holland Mathematical Library, 24. MR 637060
- Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195–216. MR 883882, DOI https://doi.org/10.1016/0021-8693%2887%2990086-X
- Nicholas M. Katz and Tadao Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213. MR 237510, DOI https://doi.org/10.1215/kjm/1250524135
- Amalendu Krishna and V. Srinivas, Zero-cycles and $K$-theory on normal surfaces, Ann. of Math. (2) 156 (2002), no. 1, 155–195. MR 1935844, DOI https://doi.org/10.2307/3597187
- A. Krishna and V. Srinivas, in preparation.
- Mark I. Krusemeyer, Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47. MR 335522, DOI https://doi.org/10.1007/BF01418849
- James D. Lewis and Shuji Saito, Algebraic cycles and Mumford-Griffiths invariants, Amer. J. Math. 129 (2007), no. 6, 1449–1499. MR 2369886, DOI https://doi.org/10.1353/ajm.2007.0046
- Ruth Ingrid Michler, Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, Astérisque 226 (1994), 10, 321–333. $K$-theory (Strasbourg, 1992). MR 1317123
- M. Pavaman Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Ann. of Math. (2) 89 (1969), 242–253. MR 241434, DOI https://doi.org/10.2307/1970667
- Christophe Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), no. 3, 488–550 (French). MR 787114, DOI https://doi.org/10.4153/CJM-1985-029-x
- V. Srinivas, Vector bundles on the cone over a curve, Compositio Math. 47 (1982), no. 3, 249–269. MR 681609
- V. Srinivas, Grothendieck groups of polynomial and Laurent polynomial rings, Duke Math. J. 53 (1986), no. 3, 595–633. MR 860663, DOI https://doi.org/10.1215/S0012-7094-86-05334-2
- V. Srinivas, $K_1$ of the cone over a curve, J. Reine Angew. Math. 381 (1987), 37–50. MR 918839, DOI https://doi.org/10.1515/crll.1987.381.37
- Richard G. Swan, On seminormality, J. Algebra 67 (1980), no. 1, 210–229. MR 595029, DOI https://doi.org/10.1016/0021-8693%2880%2990318-X
- Charles A. Weibel, $K_{2}$, $K_{3}$ and nilpotent ideals, J. Pure Appl. Algebra 18 (1980), no. 3, 333–345. MR 593622, DOI https://doi.org/10.1016/0022-4049%2880%2990008-0
- C. A. Weibel, Mayer-Vietoris sequences and module structures on $NK_ \ast $, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 466–493. MR 618317, DOI https://doi.org/10.1007/BFb0089534
- Charles A. Weibel, Homotopy algebraic $K$-theory, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 461–488. MR 991991, DOI https://doi.org/10.1090/conm/083/991991
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
- Charles Weibel, The negative $K$-theory of normal surfaces, Duke Math. J. 108 (2001), no. 1, 1–35. MR 1831819, DOI https://doi.org/10.1215/S0012-7094-01-10811-9
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249
References
- G. Cortiñas, C. Haesemeyer, M. Schlichting and C. Weibel, Cyclic homology, $cdh$-cohomology and negative $K$-theory, Annals of Math. 167 (2008), 549–563. MR 2415380 (2009c:19006)
- G. Cortiñas, C. Haesemeyer and C. Weibel, $K$-regularity, $cdh$-fibrant Hochschild homology, and a conjecture of Vorst, J. AMS 21 (2008), 547–561. MR 2373359 (2008k:19002)
- G. Cortiñas, C. Haesemeyer and C. Weibel, Infinitesimal cohomology and the Chern character to negative cyclic homology, Math. Ann. 344 (2009), 891–922, published electronically DOI: 10.1007/s00208-009-0333-9. MR 2507630 (2010i:19006)
- G. Cortiñas, C. Haesemeyer, M. Walker and C. Weibel, Bass’ $NK$ groups and $cdh$-fibrant Hochschild homology, Invent. Math. 181 (2010), 421–448. Available at http:// www.math.uiuc.edu/K-theory/#1/. MR 2657430
- R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977. MR 0463157 (57:3116)
- S. Geller, L. Reid and C. Weibel, Cyclic homology and $K$-theory of curves, J. reine angew. Math. 393 (1989), 39–90. MR 972360 (89m:14006)
- S. Iitaka. Algebraic geometry, volume 76 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. An introduction to birational geometry of algebraic varieties, North-Holland Mathematical Library, 24. MR 637060 (84j:14001)
- C. Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), 195–216. MR 883882 (88k:18019)
- N. Katz and T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8-2 (1968), 199-213. MR 0237510 (38:5792)
- A. Krishna and V. Srinivas, Zero-cycles and $K$-theory on normal surfaces, Annals Math. 156 (2002), 155–195. MR 1935844 (2003k:14005)
- A. Krishna and V. Srinivas, in preparation.
- M. Krusemeyer, Fundamental groups, algebraic $K$-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15–47. MR 0335522 (49:303)
- J. Lewis and S. Saito, Algebraic cycles and Mumford-Griffiths invariants, Amer. J. Math. 129 (2007), 1449–1499. MR 2369886 (2008j:14014)
- R. Michler, Hodge-components of cyclic homology for affine quasi-homogeneous hypersurfaces, Astérisque 226 (1994), 321–333. MR 1317123 (96a:19003)
- M. P. Murthy, Vector bundles over affine surfaces birationally equivalent to a ruled surface, Annals of Math. 89 (1969), 242–253. MR 0241434 (39:2774)
- C. Soulé, Opérations en $K$-théorie algébrique, Canad. J. Math. 37 (1985), 488–550. MR 787114 (87b:18013)
- V. Srinivas, Vector bundles on the cone over a curve, Compositio Math. 47 (1982), 249–269. MR 681609 (84e:14017)
- V. Srinivas, Grothendieck groups of polynomial and Laurent polynomial rings, Duke Math. J. 53 (1986), 595–633. MR 860663 (88a:14018)
- V. Srinivas, $K_1$ of the cone over a curve, J. reine angew. Math. 381 (1987), 37–50. MR 918839 (89e:14008)
- R. G. Swan, On Seminormality, J. Algebra 67 (1980), 210–229. MR 595029 (82d:13006)
- C. Weibel, $K_2$, $K_3$ and nilpotent ideals, J. Pure Appl. Alg. 18 (1980), 333–345. MR 593622 (82i:18016)
- C. Weibel, Mayer-Vietoris sequences and module structures on $NK_*$ , pp. 466–493 in Lecture Notes in Math., volume 854, Springer-Verlag, 1981. MR 618317 (82k:18010)
- C. Weibel, Homotopy Algebraic $K$-theory, pp. 461–488 in AMS Contemp. Math. 83, AMS, 1989. MR 991991 (90d:18006)
- C. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994. MR 1269324 (95f:18001)
- C. Weibel, The negative $K$-theory of normal surfaces. Duke Math. J. 108 (2001), 1–35. MR 1831819 (2002b:14012)
- O. Zariski and P. Samuel. Commutative algebra. Vol. II. The University Series in Higher Mathematics. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249 (22:11006)
Additional Information
G. Cortiñas
Affiliation:
Departamento Matemática, FCEyN-UBA, Ciudad Universitaria Pab 1, 1428 Buenos Aires, Argentina
MR Author ID:
18832
ORCID:
0000-0002-8103-1831
Email:
gcorti@dm.uba.ar
C. Haesemeyer
Affiliation:
Department of Mathematics, UCLA, Los Angeles, California 90095
MR Author ID:
773007
Email:
chh@math.ucla.edu
M. E. Walker
Affiliation:
Department of Mathematics, University of Nebraska–Lincoln, Lincoln, Nebraska 68588
Email:
mwalker5@math.unl.edu
C. Weibel
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08901
MR Author ID:
181325
Email:
weibel@math.rutgers.edu
Received by editor(s):
March 2, 2010
Received by editor(s) in revised form:
November 23, 2010
Published electronically:
December 27, 2011
Additional Notes:
The first author’s research was supported by CONICET and partially supported by grants PICT 2006-00836, UBACyT-X051, and MTM2007-64704.
The second and third authors were partially supported by NSF grants
The fourth author was supported by NSA and NSF grants