Test ideals via algebras of $p^{-e}$-linear maps
Author:
Manuel Blickle
Journal:
J. Algebraic Geom. 22 (2013), 49-83
DOI:
https://doi.org/10.1090/S1056-3911-2012-00576-1
Published electronically:
March 6, 2012
MathSciNet review:
2993047
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
Building on previous work of Schwede, Böckle, and the author, we study test ideals by viewing them as minimal objects in a certain class of modules, called $F$-pure modules, over algebras of $p^{-e}$-linear operators. We develop the basics of a theory of $F$-pure modules and show an important structural result, namely that $F$-pure modules have finite length. This result is then linked to the existence of test ideals and leads to a simplified and generalized treatment, also allowing us to define test ideals in non-reduced settings.
Combining our approach with an observation of Anderson on the contracting property of $p^{-e}$-linear operators yields an elementary approach to test ideals in the case of affine $k$-algebras, where $k$ is an $F$-finite field. As a byproduct, one obtains a short and completely elementary proof of the discreteness of the jumping numbers of test ideals in a generality that extends most cases known so far; in particular, one obtains results beyond the $\mathbb {Q}$-Gorenstein case.
References
- G. W. Anderson, An elementary approach to $L$-functions mod $p$, J. Number Theory 80 (2000), no. 2, 291–303. MR 1740516, DOI https://doi.org/10.1006/jnth.1999.2452
- Manuel Blickle and Gebhard Böckle, Cartier Crystals, in preparation, started 2006.
- Manuel Blickle and Gebhard Boeckle, Cartier modules: Finiteness results, J. Reine Angew. Math. 611 (2011), 85–123.
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324
- Manuel Blickle, Mircea Mustaţǎ, and Karen E. Smith, Discreteness and rationality of $F$-thresholds, Michigan Math. J. 57 (2008), 43–61. Special volume in honor of Melvin Hochster. MR 2492440, DOI https://doi.org/10.1307/mmj/1220879396
- Manuel Blickle, Mircea Mustaţă, and Karen E. Smith, $F$-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6549–6565. MR 2538604, DOI https://doi.org/10.1090/S0002-9947-09-04719-9
- Manuel Blickle, Karl Schwede, Shunsuke Takagi, and Wenliang Zhang, Discreteness and rationality of $F$-jumping numbers on singular varieties, Math. Ann. 347 (2010), no. 4, 917–949. MR 2658149, DOI https://doi.org/10.1007/s00208-009-0461-2
- Pierre Cartier, Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244 (1957), 426–428 (French). MR 84497
- Florian Enescu and Melvin Hochster, The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), no. 7, 721–754. MR 2460693, DOI https://doi.org/10.2140/ant.2008.2.721
- Matthew Emerton and Mark Kisin, Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals, Astérisque 293 (2004), vi+257 pp.
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001), no. 2, 241–252. MR 1826369, DOI https://doi.org/10.1007/s002220100121
- Osamu Fujino, Karl Schwede, and Shunsuke Takagi, Supplements to non-lc ideal sheaves, 1004.5170 (2010).
- Ofer Gabber, Notes on some $t$-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 711–734. MR 2099084
- Nobuo Hara, Geometric interpretation of tight closure and test ideals, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1885–1906. MR 1813597, DOI https://doi.org/10.1090/S0002-9947-01-02695-2
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI https://doi.org/10.1090/S0894-0347-1990-1017784-6
- Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $p$, Ann. of Math. (2) 105 (1977), no. 1, 45–79. MR 441962, DOI https://doi.org/10.2307/1971025
- Nobuo Hara and Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59–74. MR 2085311, DOI https://doi.org/10.1017/S0027763000008904
- Nobuo Hara and Ken-Ichi Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143–3174. MR 1974679, DOI https://doi.org/10.1090/S0002-9947-03-03285-9
- Mordechai Katzman, A non-finitely generated algebra of Frobenius maps, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2381–2383. MR 2607867, DOI https://doi.org/10.1090/S0002-9939-10-10336-0
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI https://doi.org/10.2307/2373351
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Proceedings of the American Mathematical Society 21 (1969), no. 1, 171–172.
- Karl Schwede, Centers of $F$-purity, Math. Z. 265 (2010), no. 3, 687–714. MR 2644316, DOI https://doi.org/10.1007/s00209-009-0536-5
- Karl Schwede, $F$-adjunction, Algebra Number Theory 3 (2009), no. 8, 907–950. MR 2587408, DOI https://doi.org/10.2140/ant.2009.3.907
- Karl Schwede, Test ideals in non-$\Bbb {Q}$-Gorenstein rings, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5925–5941. MR 2817415, DOI https://doi.org/10.1090/S0002-9947-2011-05297-9
- Karen E. Smith, The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), no. 12, 5915–5929. Special issue in honor of Robin Hartshorne. MR 1808611, DOI https://doi.org/10.1080/00927870008827196
- Shunsuke Takagi, An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393–415. MR 2047704, DOI https://doi.org/10.1090/S1056-3911-03-00366-7
- Stefano Urbinati, Discrepancies of non-$Q$-Gorenstein varieties, 1001.2930 (2010).
References
- G. W. Anderson, An elementary approach to $L$-functions mod $p$, J. Number Theory 80 (2000), no. 2, 291–303. MR 1740516 (2000m:11083)
- Manuel Blickle and Gebhard Böckle, Cartier Crystals, in preparation, started 2006.
- Manuel Blickle and Gebhard Boeckle, Cartier modules: Finiteness results, J. Reine Angew. Math. 611 (2011), 85–123.
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston Inc., Boston, MA, 2005. MR 2107324 (2005k:14104)
- Manuel Blickle, Mircea Mustatţă, and Karen E. Smith, Discreteness and rationality of $F$-thresholds, Michigan Mathematical Journal 57 (2008), 43–61, Special volume in honor of Melvin Hochster. MR 2492440 (2010c:13003)
- Manuel Blickle, Mircea Mustaţă, and Karen E. Smith, F-thresholds of hypersurfaces, Transactions of the American Mathematical Society 361 (2009), no. 12, 6549-6565. MR 2538604 (2011a:13006)
- Manuel Blickle, Karl Schwede, Shunsuke Takagi, and Wenliang Zhang, Discreteness and rationality of $F$-jumping numbers on singular varieties, Math Ann. 347 (2010), no. 4, 917–949. MR 2658149
- P. Cartier, Une nouvelle opération sur les formes différentielles, C.R. Acad. Sci., Paris 244 (1957), 426–428. MR 0084497 (18:870b)
- Florian Enescu and Melvin Hochster, The Frobenius structure of local cohomology, Algebra Number Theory 2 (2008), no. 7, 721–754. MR 2460693 (2009i:13009)
- Matthew Emerton and Mark Kisin, Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals, Astérisque 293 (2004), vi+257 pp.
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform bounds and symbolic powers on smooth varieties, Inventiones Mathematicae 144 (2001), no. 2, 241–252. MR 1826369 (2002b:13001)
- Osamu Fujino, Karl Schwede, and Shunsuke Takagi, Supplements to non-lc ideal sheaves, 1004.5170 (2010).
- Ofer Gabber, Notes on some $t$-structures, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 711–734. MR 2099084 (2005m:14025)
- Nobuo Hara, Geometric interpretation of tight closure and test ideals, Transactions of the American Mathematical Society 353 (2001), no. 5, 1885–1906 (electronic). MR 1813597 (2001m:13009)
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory and the Briancon-Skoda theorem, Journal of the American Mathematical Society 3 (1990), 31–116. MR 1017784 (91g:13010)
- Robin Hartshorne and Robert Speiser, Local cohomological dimension in characteristic $p$, Annals of Mathematics 105 (1977), 45–79. MR 0441962 (56:353)
- Nobuo Hara and Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59–74. MR 2085311 (2005g:13009)
- Nobuo Hara and Ken-Ichi Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143–3174 (electronic). MR 1974679 (2004i:13003)
- Mordechai Katzman, A non-finitely generated algebra of Frobenius maps, Proc. Amer. Math. Soc. 138 (2010), no. 7, 2381–2383. MR 2607867
- E. Kunz, Characterization of regular local rings in characteristic $p$, Amer J. Math. 91 (1969), 772–784. MR 0252389 (40:5609)
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Proceedings of the American Mathematical Society 21 (1969), no. 1, 171–172.
- Karl Schwede, Centers of f-purity, Math. Z 265 (2010), no. 3, 687–714. MR 2644316 (2011e:13011)
- ---, F-adjunction, Algebra & Number Theory (2009), Algebra Number Theory 3 (2009), no. 8, 907–950. MR 2587408 (2011b:14006)
- ---, Test ideals in non-Q-Gorenstein rings, Trans Amer. Math. Soc. 363 (2011), no. 11, 5925–5941. MR 2817415
- Karen E. Smith, The multiplier ideal is a universal test ideal, Comm. Algebra 28 (2000), no. 12, 5915–5929, Special issue in honor of Robin Hartshorne. MR 1808611 (2002d:13008)
- Shunsuke Takagi, An interpretation of multiplier ideals via tight closure, J. Algebraic Geom. 13 (2004), no. 2, 393–415. MR 2047704 (2005c:13002)
- Stefano Urbinati, Discrepancies of non-$Q$-Gorenstein varieties, 1001.2930 (2010).
Additional Information
Manuel Blickle
Affiliation:
Johannes Gutenberg Universität Mainz, FB08 Institut für Mathematik, 55099 Mainz, Germany
Email:
blicklem@uni-mainz.de
Received by editor(s):
March 29, 2010
Received by editor(s) in revised form:
August 25, 2010, and September 20, 2010
Published electronically:
March 6, 2012
Additional Notes:
The research for this paper was conducted while I was supported by a Heisenberg Fellowship of the DFG and by the SFB/TRR45.