Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal
Author:
Claire Voisin
Journal:
J. Algebraic Geom. 22 (2013), 141-174
DOI:
https://doi.org/10.1090/S1056-3911-2012-00597-9
Published electronically:
May 23, 2012
MathSciNet review:
2993050
Full-text PDF
Abstract | References | Additional Information
Abstract: Given a smooth projective -fold
, with
, the Abel-Jacobi map induces a morphism from each smooth variety parameterizing codimension
-cycles in
to the intermediate Jacobian
, which is an abelian variety. Assuming
, we study in this paper the existence of families of
-cycles in
for which this induced morphism is surjective with rationally connected general fiber, and various applications of this property. When
itself is rationally connected with trivial Brauer group, we relate this property to the existence of an integral cohomological decomposition of the diagonal of
. We also study this property for cubic threefolds, completing the work of Iliev-Markushevich-Tikhomirov. We then conclude that the Hodge conjecture holds for degree
integral Hodge classes on fibrations into cubic threefolds over curves, with some restriction on singular fibers.
- 1. Arnaud Beauville, Les singularités du diviseur Θ de la jacobienne intermédiaire de l’hypersurface cubique dans 𝑃⁴, Algebraic threefolds (Varenna, 1981) Lecture Notes in Math., vol. 947, Springer, Berlin-New York, 1982, pp. 190–208 (French). MR 672617
- 2. Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 0412191
- 3. S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253. MR 714776, https://doi.org/10.2307/2374341
- 4. Ana-Maria Castravet, Rational families of vector bundles on curves, Internat. J. Math. 15 (2004), no. 1, 13–45. MR 2039210, https://doi.org/10.1142/S0129167X0400220X
- 5. C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 0302652, https://doi.org/10.2307/1970801
- 6. Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141–158 (French). MR 999316, https://doi.org/10.1007/BF01850658
- 7. J.-L. Colliot-Thélène, C. Voisin. Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. Journal, Volume 161, Number 5, 735-801 (2012).
- 8. A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238 (1978), no. 1, 79–88. MR 510310, https://doi.org/10.1007/BF01351457
- 9. Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of 𝐿-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- 10. William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- 11. Tom Graber, Joe Harris, Barry Mazur, and Jason Starr, Rational connectivity and sections of families over curves, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 671–692 (English, with English and French summaries). MR 2195256, https://doi.org/10.1016/j.ansens.2005.07.003
- 12. Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, https://doi.org/10.1090/S0894-0347-02-00402-2
- 13. Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733
- 14. A.Grothendieck. Cohomologie locale des faisceaus coherents et Theoremes de Lefschetz locaux and globale (SGA 2), Advanced studies in Pure Mathematics, North-Holland, Amsterdam (1968).
- 15. A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969), 299–303. MR 0252404, https://doi.org/10.1016/0040-9383(69)90016-0
- 16. Joe Harris, Mike Roth, and Jason Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005), no. 3, 761–817. MR 2150309, https://doi.org/10.1216/rmjm/1181069707
- 17. J. Harris, M. Roth and J. Starr, Abel-Jacobi maps associated to smooth cubic threefolds, arXiv:math/0202080.
- 18. Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, https://doi.org/10.1090/S0002-9947-09-04715-1
- 19. A. Iliev and D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math. 5 (2000), 23–47. MR 1739270
- 20. E. Ballico, F. Catanese, and C. Ciliberto (eds.), Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties. MR 1180332
- 21. János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- 22. D. Markushevich and A. S. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. 10 (2001), no. 1, 37–62. MR 1795549
- 23. D. Mumford, Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 0249428, https://doi.org/10.1215/kjm/1250523940
- 24. J. P. Murre, Applications of algebraic 𝐾-theory to the theory of algebraic cycles, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer, Berlin, 1985, pp. 216–261. MR 805336, https://doi.org/10.1007/BFb0075002
- 25. M. Reid. The intersection of two or more quadrics, Ph.D. thesis 1972, available at www.maths.warwick.ac.uk/~miles/3folds/qu.pdf.
- 26. C. Soulé and C. Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds, Adv. Math. 198 (2005), no. 1, 107–127. MR 2183252, https://doi.org/10.1016/j.aim.2004.10.022
- 27. Vladimir Voevodsky, On motivic cohomology with 𝐙/𝐥-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, https://doi.org/10.4007/annals.2011.174.1.11
- 28. Claire Voisin, On integral Hodge classes on uniruled or Calabi-Yau threefolds, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 43–73. MR 2306166
- 29. Claire Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261–296. MR 2342587, https://doi.org/10.1007/s11537-007-0639-x
- 30.
Claire
Voisin, Hodge theory and complex algebraic geometry. I,
Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge
University Press, Cambridge, 2002. Translated from the French original by
Leila Schneps. MR
1967689
Claire Voisin, Hodge theory and complex algebraic geometry. II, Cambridge Studies in Advanced Mathematics, vol. 77, Cambridge University Press, Cambridge, 2003. Translated from the French by Leila Schneps. MR 1997577 - 31. Steven Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), no. 2, 199–209. MR 0453741
Additional Information
Claire Voisin
Affiliation:
Institut de mathématiques de Jussieu, 175 rue due Chevaleret, 75013 Paris, France
Email:
voisin@math.jussieu.fr
DOI:
https://doi.org/10.1090/S1056-3911-2012-00597-9
Received by editor(s):
April 17, 2010
Received by editor(s) in revised form:
February 1, 2011
Published electronically:
May 23, 2012
Dedicated:
This paper is dedicated to the memory of Eckart Viehweg