Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal
Author:
Claire Voisin
Journal:
J. Algebraic Geom. 22 (2013), 141-174
DOI:
https://doi.org/10.1090/S1056-3911-2012-00597-9
Published electronically:
May 23, 2012
MathSciNet review:
2993050
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Given a smooth projective $n$-fold $Y$, with $H^{3,0}(Y)=0$, the Abel-Jacobi map induces a morphism from each smooth variety parameterizing codimension $2$-cycles in $Y$ to the intermediate Jacobian $J(Y)$, which is an abelian variety. Assuming $n=3$, we study in this paper the existence of families of $1$-cycles in $Y$ for which this induced morphism is surjective with rationally connected general fiber, and various applications of this property. When $Y$ itself is rationally connected with trivial Brauer group, we relate this property to the existence of an integral cohomological decomposition of the diagonal of $Y$. We also study this property for cubic threefolds, completing the work of Iliev-Markushevich-Tikhomirov. We then conclude that the Hodge conjecture holds for degree $4$ integral Hodge classes on fibrations into cubic threefolds over curves, with some restriction on singular fibers.
References
- Arnaud Beauville, Les singularités du diviseur $\Theta $ de la jacobienne intermédiaire de l’hypersurface cubique dans ${\bf P}^{4}$, Algebraic threefolds (Varenna, 1981) Lecture Notes in Math., vol. 947, Springer, Berlin-New York, 1982, pp. 190–208 (French). MR 672617
- Spencer Bloch and Arthur Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. École Norm. Sup. (4) 7 (1974), 181–201 (1975). MR 412191
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253. MR 714776, DOI https://doi.org/10.2307/2374341
- Ana-Maria Castravet, Rational families of vector bundles on curves, Internat. J. Math. 15 (2004), no. 1, 13–45. MR 2039210, DOI https://doi.org/10.1142/S0129167X0400220X
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI https://doi.org/10.2307/1970801
- Jean-Louis Colliot-Thélène and Manuel Ojanguren, Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math. 97 (1989), no. 1, 141–158 (French). MR 999316, DOI https://doi.org/10.1007/BF01850658
- J.-L. Colliot-Thélène, C. Voisin. Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. Journal, Volume 161, Number 5, 735–801 (2012).
- A. Conte and J. P. Murre, The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238 (1978), no. 1, 79–88. MR 510310, DOI https://doi.org/10.1007/BF01351457
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
- Tom Graber, Joe Harris, Barry Mazur, and Jason Starr, Rational connectivity and sections of families over curves, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 671–692 (English, with English and French summaries). MR 2195256, DOI https://doi.org/10.1016/j.ansens.2005.07.003
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI https://doi.org/10.1090/S0894-0347-02-00402-2
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2) 90 (1969), 496–541. MR 0260733, DOI https://doi.org/10.2307/1970746
- A.Grothendieck. Cohomologie locale des faisceaus coherents et Theoremes de Lefschetz locaux and globale (SGA 2), Advanced studies in Pure Mathematics, North-Holland, Amsterdam (1968).
- A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969), 299–303. MR 252404, DOI https://doi.org/10.1016/0040-9383%2869%2990016-0
- Joe Harris, Mike Roth, and Jason Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005), no. 3, 761–817. MR 2150309, DOI https://doi.org/10.1216/rmjm/1181069707
- J. Harris, M. Roth and J. Starr, Abel-Jacobi maps associated to smooth cubic threefolds, arXiv:math/0202080.
- Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, DOI https://doi.org/10.1090/S0002-9947-09-04715-1
- A. Iliev and D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math. 5 (2000), 23–47. MR 1739270
- E. Ballico, F. Catanese, and C. Ciliberto (eds.), Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties. MR 1180332
- János Kollár, Yoichi Miyaoka, and Shigefumi Mori, Rationally connected varieties, J. Algebraic Geom. 1 (1992), no. 3, 429–448. MR 1158625
- D. Markushevich and A. S. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. 10 (2001), no. 1, 37–62. MR 1795549
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 249428, DOI https://doi.org/10.1215/kjm/1250523940
- J. P. Murre, Applications of algebraic $K$-theory to the theory of algebraic cycles, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer, Berlin, 1985, pp. 216–261. MR 805336, DOI https://doi.org/10.1007/BFb0075002
- M. Reid. The intersection of two or more quadrics, Ph.D. thesis 1972, available at www.maths.warwick.ac.uk/\symbol{126}miles/3folds/qu.pdf.
- C. Soulé and C. Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds, Adv. Math. 198 (2005), no. 1, 107–127. MR 2183252, DOI https://doi.org/10.1016/j.aim.2004.10.022
- Vladimir Voevodsky, On motivic cohomology with $\mathbf Z/l$-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603, DOI https://doi.org/10.4007/annals.2011.174.1.11
- Claire Voisin, On integral Hodge classes on uniruled or Calabi-Yau threefolds, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 43–73. MR 2306166, DOI https://doi.org/10.2969/aspm/04510043
- Claire Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007), no. 2, 261–296. MR 2342587, DOI https://doi.org/10.1007/s11537-007-0639-x
- Claire Voisin, Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, vol. 76, Cambridge University Press, Cambridge, 2002. Translated from the French original by Leila Schneps. MR 1967689
- Steven Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977), no. 2, 199–209. MR 453741
References
- A. Beauville. Les singularités du diviseur Theta de la jacobienne intermédiaire de l’hypersurface cubique dans $\mathbb {P}^4$, in Algebraic threefolds (Proc. Varenna 1981), LN 947, 190-208; Springer-Verlag (1982). MR 672617 (84c:14030)
- S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., IV. Sér. 7, 181-201 (1974). MR 0412191 (54:318)
- S. Bloch and V. Srinivas, Remarks on correspondences and algebraic cycles, Amer. J. of Math. 105 (1983), 1235-1253. MR 714776 (85i:14002)
- A-M. Castravet. Rational families of vector bundles on curves, International Journal of Mathematics, Vol. 15, No. 1 (2004), 13-45. MR 2039210 (2005i:14038)
- H. Clemens, P. Griffiths. The intermediate Jacobian of the cubic Threefold, Ann. of Math. 95 (1972), 281-356. MR 0302652 (46:1796)
- J.-L. Colliot-Thélène, M. Ojanguren. Variétés unirationnelles non rationnelles: au-delà de l’exemple d’Artin et Mumford, Invent. math. 97 (1989), no. 1, 141–158. MR 999316 (90m:14012)
- J.-L. Colliot-Thélène, C. Voisin. Cohomologie non ramifiée et conjecture de Hodge entière, Duke Math. Journal, Volume 161, Number 5, 735–801 (2012).
- A. Conte, J. Murre. The Hodge conjecture for fourfolds admitting a covering by rational curves, Math. Ann. 238, 461-513 (1978). MR 510310 (80a:14018)
- H. Esnault, E. Viehweg. Deligne-Beilinson cohomology, in Beilinson’s Conjectures on Special Values of L-Functions, Editors M. Rapaport, P. Schneider and N. Schappacher, Perspect. Math., Vol. 4, Academic Press, Boston, MA, 1988, 43-91. MR 944991 (89k:14008)
- W. Fulton. Intersection Theory, Ergebnisse der Math. und ihrer Grenzgebiete 3 Folge, Band 2, Springer (1984). MR 732620 (85k:14004)
- T. Graber, J. Harris, B. Mazur, J. Starr. Rational connectivity and sections of families over curves, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 671-692. MR 2195256 (2006j:14044)
- T. Graber, J. Harris, J. Starr. Families of rationally connected varieties. J. Amer. Math. Soc., 16(1), 57-67 (2003). MR 1937199 (2003m:14081)
- P. Griffiths. On the periods of certain rational integrals, I, II, Ann. of Math. 90 (1969), 460-541. MR 0260733 (41:5357)
- A.Grothendieck. Cohomologie locale des faisceaus coherents et Theoremes de Lefschetz locaux and globale (SGA 2), Advanced studies in Pure Mathematics, North-Holland, Amsterdam (1968).
- A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969), 299–303. MR 0252404 (40:5624)
- J. Harris, M. Roth and J. Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005), no. 3, 761-817. MR 2150309 (2007a:14011)
- J. Harris, M. Roth and J. Starr, Abel-Jacobi maps associated to smooth cubic threefolds, arXiv:math/0202080.
- A. Hogadi and C. Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361, 7, 3931-3949 (2009). MR 2491906 (2010i:14091)
- A. Iliev and D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree $14$, Documenta Mathematica, 5, 23-47 (2000). MR 1739270 (2000m:14042)
- J. Kollár. Trento examples, in Classification of irregular varieties, edited by E. Ballico, F. Catanese, C. Ciliberto, Lecture Notes in Math. 1515, Springer (1990), p. 134. MR 1180332 (93d:14005)
- J. Kollár, Y. Miyaoka and S. Mori, Rationally connected varieties, Journal of Algebraic Geometry 1, 429-448 (1992). MR 1158625 (93i:14014)
- D. Markushevich and A. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geometry 10 (2001), 37-62. MR 1795549 (2001j:14055)
- D. Mumford. Rational equivalence of zero-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195-204. MR 0249428 (40:2673)
- J. P. Murre, Applications of algebraic $K$-theory to the theory of algebraic cycles, in Proc. Conf. Algebraic Geometry, Sitjes 1983, LNM 1124 (1985), 216-261, Springer-Verlag. MR 805336 (87a:14006)
- M. Reid. The intersection of two or more quadrics, Ph.D. thesis 1972, available at www.maths.warwick.ac.uk/\symbol{126}miles/3folds/qu.pdf.
- C. Soulé and C. Voisin, Torsion cohomology classes and algebraic cycles on complex projective manifolds. Adv. Math. 198 (2005), no. 1, 107–127. MR 2183252 (2006i:14006)
- V. Voevodsky. On motivic cohomology with $\mathbb {Z}/l$-coefficients, Annals of Math. (2) 174 (2011), no. 1, 401–438. MR 2811603
- C. Voisin, On integral Hodge classes on uniruled and Calabi-Yau threefolds, in Moduli Spaces and Arithmetic Geometry, Advanced Studies in Pure Mathematics 45, 2006, pp. 43-73. MR 2306166 (2008f:14057)
- C. Voisin, Some aspects of the Hodge conjecture, Japan. J. Math. 2, 261-296 (2007). MR 2342587 (2008g:14012)
- C. Voisin. Hodge theory and Complex Algebraic Geometry I and II, Cambridge Studies in advanced Mathematics 76 and 77, Cambridge University Press 2002, 2003. MR 1967689 (2004d:32020); MR 1997577 (2005c:32024b)
- S. Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34, 199-209 (1977). MR 0453741 (56:12001)
Additional Information
Claire Voisin
Affiliation:
Institut de mathématiques de Jussieu, 175 rue due Chevaleret, 75013 Paris, France
MR Author ID:
237928
Email:
voisin@math.jussieu.fr
Received by editor(s):
April 17, 2010
Received by editor(s) in revised form:
February 1, 2011
Published electronically:
May 23, 2012
Dedicated:
This paper is dedicated to the memory of Eckart Viehweg