The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension
Authors:
Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun and Thomas Peternell
Journal:
J. Algebraic Geom. 22 (2013), 201-248
DOI:
https://doi.org/10.1090/S1056-3911-2012-00574-8
Published electronically:
May 31, 2012
MathSciNet review:
3019449
Full-text PDF
Abstract | References | Additional Information
Abstract: We prove that a holomorphic line bundle on a projective manifold is pseudo-effective if and only if its degree on any member of a covering family of curves is non-negative. This is a consequence of a duality statement between the cone of pseudo-effective divisors and the cone of “movable curves”, which is obtained from a general theory of movable intersections and approximate Zariski decomposition for closed positive $(1,1)$-currents. As a corollary, a projective manifold has a pseudo-effective canonical bundle if and only if it is not uniruled. We also prove that a 4-fold with a canonical bundle which is pseudo-effective and of numerical class zero in restriction to curves of a good covering family, has non-negative Kodaira dimension.
- Florin Ambro, Nef dimension of minimal models, Math. Ann. 330 (2004), no. 2, 309–322. MR 2089428, DOI https://doi.org/10.1007/s00208-004-0550-1
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308. MR 2475816, DOI https://doi.org/10.1090/S1056-3911-08-00490-6
- Sébastien Boucksom, On the volume of a line bundle, Internat. J. Math. 13 (2002), no. 10, 1043–1063. MR 1945706, DOI https://doi.org/10.1142/S0129167X02001575
- Boucksom, S.: Cônes positifs des variétés complexes compactes, Thesis, Grenoble 2002.
- Marco Brunella, A positivity property for foliations on compact Kähler manifolds, Internat. J. Math. 17 (2006), no. 1, 35–43. MR 2204838, DOI https://doi.org/10.1142/S0129167X06003333
- F. Campana, Coréduction algébrique d’un espace analytique faiblement kählérien compact, Invent. Math. 63 (1981), no. 2, 187–223 (French). MR 610537, DOI https://doi.org/10.1007/BF01393876
- Frédéric Campana, Remarques sur le revêtement universel des variétés kählériennes compactes, Bull. Soc. Math. France 122 (1994), no. 2, 255–284 (French, with English and French summaries). MR 1273904
- Frédéric Campana, Orbifolds, special varieties and classification theory: an appendix, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 631–665 (English, with English and French summaries). MR 2097417
- Frédéric Campana and Thomas Peternell, Algebraicity of the ample cone of projective varieties, J. Reine Angew. Math. 407 (1990), 160–166. MR 1048532
- Frédéric Campana and Thomas Peternell, Appendix to the article of T. Peternell: [“Toward a Mori theory and compact Kähler threefolds. III”, Bull. Soc. Math. France 129 (2001), no. 3, 339–356; MR1881199 (2003b:32024)] the Kodaira dimension of Kummer threefolds, Bull. Soc. Math. France 129 (2001), no. 3, 357–359 (English, with English and French summaries). MR 1881200, DOI https://doi.org/10.24033/bsmf.2401
- Frédéric Campana and Thomas Peternell, Appendix to the article of T. Peternell: [“Toward a Mori theory and compact Kähler threefolds. III”, Bull. Soc. Math. France 129 (2001), no. 3, 339–356; MR1881199 (2003b:32024)] the Kodaira dimension of Kummer threefolds, Bull. Soc. Math. France 129 (2001), no. 3, 357–359 (English, with English and French summaries). MR 1881200, DOI https://doi.org/10.24033/bsmf.2401
- Jean-Louis Colliot-Thélène, Arithmétique des variétés rationnelles et problèmes birationnels, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 641–653 (French). MR 934267, DOI https://doi.org/10.1215/s0012-7094-87-05420-2
- Olivier Debarre, Classes de cohomologie positives dans les variétés kählériennes compactes (d’après Boucksom, Demailly, Nakayama, Păun, Peternell et al.), Astérisque 307 (2006), Exp. No. 943, viii, 199–228 (French, with French summary). Séminaire Bourbaki. Vol. 2004/2005. MR 2296419
- Jean-Pierre Demailly, Champs magnétiques et inégalités de Morse pour la $d”$-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189–229 (French, with English summary). MR 812325
- Jean-Pierre Demailly, Singular Hermitian metrics on positive line bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 87–104. MR 1178721, DOI https://doi.org/10.1007/BFb0094512
- Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361–409. MR 1158622
- Demailly, J.-P., Vanishing theorems and effective results in algebraic geometry, School on algebraic Geometry held at ICTP in January 2000, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001.
- Jean-Pierre Demailly, Kähler manifolds and transcendental techniques in algebraic geometry, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 153–186. MR 2334190, DOI https://doi.org/10.4171/022-1/8
- Demailly, J.-P., Holomorphic Morse inequalities and asymptotic cohomology groups: a tribute to Bernhard Riemann, arXiv:1003.5067, math.CV, to appear in Proceedings of the Riemann International School of Mathematics, Advances in Number Theory and Geometry, held at Verbania (Italy), April 2009.
- Jean-Pierre Demailly, Lawrence Ein, and Robert Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137–156. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786484, DOI https://doi.org/10.1307/mmj/1030132712
- Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274. MR 2113021, DOI https://doi.org/10.4007/annals.2004.159.1247
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Holomorphic line bundles with partially vanishing cohomology, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) Israel Math. Conf. Proc., vol. 9, Bar-Ilan Univ., Ramat Gan, 1996, pp. 165–198. MR 1360502
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI https://doi.org/10.1142/S0129167X01000861
- Thomas Eckl, Tsuji’s numerical trivial fibrations, J. Algebraic Geom. 13 (2004), no. 4, 617–639. MR 2072764, DOI https://doi.org/10.1090/S1056-3911-04-00363-7
- Takao Fujita, Approximating Zariski decomposition of big line bundles, Kodai Math. J. 17 (1994), no. 1, 1–3. MR 1262949, DOI https://doi.org/10.2996/kmj/1138039894
- Tom Graber, Joe Harris, and Jason Starr, Families of rationally connected varieties, J. Amer. Math. Soc. 16 (2003), no. 1, 57–67. MR 1937199, DOI https://doi.org/10.1090/S0894-0347-02-00402-2
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Christopher D. Hacon and James Mckernan, On Shokurov’s rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119–136. MR 2309156, DOI https://doi.org/10.1215/S0012-7094-07-13813-4
- Daniel Huybrechts, Birational symplectic manifolds and their deformations, J. Differential Geom. 45 (1997), no. 3, 488–513. MR 1472886
- Kawamata, Y., Matsuki, K., Matsuda, K., Introduction to the minimal model program, Adv. Stud. Pure Math. 10 (1987), 283–360.
- János Kollár and Shigefumi Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533–703. MR 1149195, DOI https://doi.org/10.1090/S0894-0347-1992-1149195-9
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI https://doi.org/10.2307/1971390
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. MR 909698
- Kollaŕ, J., et al., Flips and abundance for algebraic $3$-folds, Astérisque 211, Soc. Math. France, 1992.
- Lazarsfeld, R., Ampleness modulo the branch locus of the bundle associated to a branched covering, Comm. Alg. 28 (2000), 5598–5599.
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
- Yoichi Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 449–476. MR 946247, DOI https://doi.org/10.2969/aspm/01010449
- Yoichi Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann. 281 (1988), no. 2, 325–332. MR 949837, DOI https://doi.org/10.1007/BF01458437
- Yoichi Miyaoka, Abundance conjecture for $3$-folds: case $\nu =1$, Compositio Math. 68 (1988), no. 2, 203–220. MR 966580
- Yoichi Miyaoka and Shigefumi Mori, A numerical criterion for uniruledness, Ann. of Math. (2) 124 (1986), no. 1, 65–69. MR 847952, DOI https://doi.org/10.2307/1971387
- Shigefumi Mori, Classification of higher-dimensional varieties, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 269–331. MR 927961
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI https://doi.org/10.1090/S0894-0347-1988-0924704-X
- Noboru Nakayama, On Weierstrass models, Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, pp. 405–431. MR 977771
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Mihai Paun, Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (1998), no. 3, 411–421 (French). MR 1612321, DOI https://doi.org/10.1007/s002080050154
- Thomas Peternell, Towards a Mori theory on compact Kähler threefolds. III, Bull. Soc. Math. France 129 (2001), no. 3, 339–356 (English, with English and French summaries). MR 1881199, DOI https://doi.org/10.24033/bsmf.2400
- Thomas Peternell, Kodaira dimension of subvarieties. II, Internat. J. Math. 17 (2006), no. 5, 619–631. MR 2229475, DOI https://doi.org/10.1142/S0129167X0600362X
- Thomas Peternell, Michael Schneider, and Andrew J. Sommese, Kodaira dimension of subvarieties, Internat. J. Math. 10 (1999), no. 8, 1065–1079. MR 1739364, DOI https://doi.org/10.1142/S0129167X9900046X
- Thomas Peternell and Andrew J. Sommese, Ample vector bundles and branched coverings. II, The Fano Conference, Univ. Torino, Turin, 2004, pp. 625–645. MR 2112595
- Shepherd-Barron, N., Miyaoka’s theorems on the generic semi-negativity of $T_X$, Astérisque 211 (1992), 103–114.
- Tsuji, H., Numerically trivial fibrations., math.AG/0001023 (2000).
- Thomas Bauer, Frédéric Campana, Thomas Eckl, Stefan Kebekus, Thomas Peternell, Sławomir Rams, Tomasz Szemberg, and Lorenz Wotzlaw, A reduction map for nef line bundles, Complex geometry (Göttingen, 2000) Springer, Berlin, 2002, pp. 27–36. MR 1922095
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI https://doi.org/10.1002/cpa.3160310304
Additional Information
Sébastien Boucksom
Affiliation:
Université de Paris VII, Institut de Mathématiques, 175 rue du Chevaleret, 75013 Paris, France
MR Author ID:
688226
Email:
boucksom@math.jussieu.fr
Jean-Pierre Demailly
Affiliation:
Université de Grenoble I, Institut Fourier, UMR 5582 du CNRS, BP 74, 100 rue des maths, 38402 Saint-Martin d’Hères, France
Email:
demailly@fourier.ujf-grenoble.fr
Mihai Păun
Affiliation:
Université de Strasbourg, Département de Mathématiques, 67084 Strasbourg, France
Address at time of publication:
Université Henri Poincaré - Nancy I, Institut Élie Cartan, BP 239, F-54506 Vandœuvre lès Nancy, France
Email:
mihai.paun@iecn.u-nancy.fr
Thomas Peternell
Affiliation:
Universität Bayreuth, Mathematisches Institut, D-95440 Bayreuth, Deutschland
MR Author ID:
138450
Email:
Thomas.Peternell@uni-bayreuth.de
Received by editor(s):
April 29, 2010
Received by editor(s) in revised form:
July 15, 2010
Published electronically:
May 31, 2012
Additional Notes:
The original version of the present paper was forwarded to arXiv (in May 2004), and has been revised several times since then. It had also been submitted to a journal in 2004, but then the submission was cancelled after the referee expressed concerns about certain parts of the paper, as they were written at that time. Although the results of sections 1-5 have been reproduced several times, e.g. in lecture notes of the second-named author or in Rob Lazarsfeld’s book \cite{La04}, a complete version never appeared in a refereed journal. We thank the Journal of Algebraic Geometry for suggesting to repair this omission.