Positivity and vanishing theorems for ample vector bundles
Authors:
Kefeng Liu, Xiaofeng Sun and Xiaokui Yang
Journal:
J. Algebraic Geom. 22 (2013), 303-331
DOI:
https://doi.org/10.1090/S1056-3911-2012-00588-8
Published electronically:
August 9, 2012
MathSciNet review:
3019451
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this paper, we study the Nakano-positivity and dual-Nakano- positivity of certain adjoint vector bundles associated to ample vector bundles. As applications, we get new vanishing theorems about ample vector bundles. For example, we prove that if $E$ is an ample vector bundle over a compact Kähler manifold $X$, $S^kE\otimes \det E$ is both Nakano-positive and dual-Nakano-positive for any $k\geq 0$. Moreover, $H^{n,q}(X,S^kE\otimes \det E)=H^{q,n}(X,S^kE\otimes \det E)=0$ for any $q\geq 1$. In particular, if $(E,h)$ is a Griffiths-positive vector bundle, the naturally induced Hermitian vector bundle $(S^kE\otimes \det E, S^kh\otimes \det h)$ is both Nakano-positive and dual-Nakano-positive for any $k\geq 0$.
References
- Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective varieties, De Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995. MR 1318687
- Bo Berndtsson, Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), no. 2, 531–560. MR 2480611, DOI https://doi.org/10.4007/annals.2009.169.531
- Bo Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom. 81 (2009), no. 3, 457–482. MR 2487599
- B. Berndtsson, Strict and non strict positivity of direct image bundles. arXiv:1002.4797.
- Robert J. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math. 131 (2009), no. 5, 1485–1524. MR 2559862, DOI https://doi.org/10.1353/ajm.0.0077
- R. Berman, Relative Kähler-Ricci flows and their quantization. arXiv:1002.3717.
- F. Campana and H. Flenner, A characterization of ample vector bundles on a curve, Math. Ann. 287 (1990), no. 4, 571–575. MR 1066815, DOI https://doi.org/10.1007/BF01446914
- Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412
- J-P. Demailly, Complex analytic and algebraic geometry. book online http://www-fourier.ujf-grenoble.fr/˜demailly/books.html.
- Jean-Pierre Demailly, Vanishing theorems for tensor powers of an ample vector bundle, Invent. Math. 91 (1988), no. 1, 203–220. MR 918242, DOI https://doi.org/10.1007/BF01404918
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Compact complex manifolds with numerically effective tangent bundles, J. Algebraic Geom. 3 (1994), no. 2, 295–345. MR 1257325
- J.-P. Demailly and H. Skoda, Relations entre les notions de positivités de P. A. Griffiths et de S. Nakano pour les fibrés vectoriels, Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), Lecture Notes in Math., vol. 822, Springer, Berlin, 1980, pp. 304–309 (French). MR 599033
- Takao Fujita, On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 105–112. MR 1178722, DOI https://doi.org/10.1007/BFb0094513
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
- Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 193092
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial $ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI https://doi.org/10.1007/BF02391775
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- Hironobu Ishihara, Some adjunction properties of ample vector bundles, Canad. Math. Bull. 44 (2001), no. 4, 452–458. MR 1863637, DOI https://doi.org/10.4153/CMB-2001-045-7
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
- F. Laytimi and W. Nahm, A generalization of Le Potier’s vanishing theorem, Manuscripta Math. 113 (2004), no. 2, 165–189. MR 2128545, DOI https://doi.org/10.1007/s00229-003-0432-y
- F. Laytimi and W. Nahm, On a vanishing problem of Demailly, Int. Math. Res. Not. 47 (2005), 2877–2889. MR 2192217, DOI https://doi.org/10.1155/IMRN.2005.2877
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. I, J. Differential Geom. 68 (2004), no. 3, 571–637. MR 2144543
- Xiaonan Ma and Weiping Zhang, Superconnection and family Bergman kernels, C. R. Math. Acad. Sci. Paris 344 (2007), no. 1, 41–44 (English, with English and French summaries). MR 2286586, DOI https://doi.org/10.1016/j.crma.2006.11.013
- Laurent Manivel, Vanishing theorems for ample vector bundles, Invent. Math. 127 (1997), no. 2, 401–416. MR 1427625, DOI https://doi.org/10.1007/s002220050126
- Shigefumi Mori, Projective manifolds with ample tangent bundles, Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387, DOI https://doi.org/10.2307/1971241
- Christophe Mourougane and Shigeharu Takayama, Hodge metrics and positivity of direct images, J. Reine Angew. Math. 606 (2007), 167–178. MR 2337646, DOI https://doi.org/10.1515/CRELLE.2007.039
- Christophe Mourougane and Shigeharu Takayama, Hodge metrics and the curvature of higher direct images, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 905–924 (English, with English and French summaries). MR 2504108, DOI https://doi.org/10.24033/asens.2084
- Shigeo Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1–12. MR 73263, DOI https://doi.org/10.2969/jmsj/00710001
- Thomas Peternell, A characterization of ${\bf P}_n$ by vector bundles, Math. Z. 205 (1990), no. 3, 487–490. MR 1082869, DOI https://doi.org/10.1007/BF02571257
- Th. Peternell, J. Le Potier, and M. Schneider, Vanishing theorems, linear and quadratic normality, Invent. Math. 87 (1987), no. 3, 573–586. MR 874037, DOI https://doi.org/10.1007/BF01389243
- Georg Schumacher, On the geometry of moduli spaces, Manuscripta Math. 50 (1985), 229–267. MR 784145, DOI https://doi.org/10.1007/BF01168833
- G. Schumacher, Curvature of higher direct images and applications. arXiv:1002.4858.
- Bernard Shiffman and Andrew John Sommese, Vanishing theorems on complex manifolds, Progress in Mathematics, vol. 56, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 782484
- Yum Tong Siu, Curvature of the Weil-Petersson metric in the moduli space of compact Kähler-Einstein manifolds of negative first Chern class, Contributions to several complex variables, Aspects Math., E9, Friedr. Vieweg, Braunschweig, 1986, pp. 261–298. MR 859202
- Yum Tong Siu and Shing Tung Yau, Compact Kähler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), no. 2, 189–204. MR 577360, DOI https://doi.org/10.1007/BF01390043
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Hiroshi Umemura, Some results in the theory of vector bundles, Nagoya Math. J. 52 (1973), 97–128. MR 337968
- Scott A. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves, Invent. Math. 85 (1986), no. 1, 119–145. MR 842050, DOI https://doi.org/10.1007/BF01388794
- Yun-Gang Ye and Qi Zhang, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. 60 (1990), no. 3, 671–687. MR 1054530, DOI https://doi.org/10.1215/S0012-7094-90-06027-2
References
- M.C. Beltrametti and A.J. Sommese, The adjunction theory of complex projective varieties. Expositions in Math. 16, de Gruyter, 1995. MR 1318687 (96f:14004)
- B. Berndtsson, Curvature of vector bundles associated to holomorphic fibrations. Ann. of Math. (2) 169 (2009), no. 2, 531–560. MR 2480611 (2010c:32036)
- B. Berndtsson, Positivity of direct image bundles and convexity on the space of Kähler metrics. J. Differential Geom. 81(2009), no. 3, 457–482. MR 2487599 (2010e:32020)
- B. Berndtsson, Strict and non strict positivity of direct image bundles. arXiv:1002.4797.
- R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds. Amer. J. Math. 131 (2009), no. 5, 1485–1524. MR 2559862 (2010g:32030)
- R. Berman, Relative Kähler-Ricci flows and their quantization. arXiv:1002.3717.
- F. Campana and H. Flenner, A characterization of ample vector bundles on a curve. Math. Ann. 287 (1990), no. 4, 571–575. MR 1066815 (91f:14027)
- M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves. Ann. Sci. école Norm. Sup. (4) 21 (1988), no. 3, 455–475. MR 974412 (89j:14019)
- J-P. Demailly, Complex analytic and algebraic geometry. book online http://www-fourier.ujf-grenoble.fr/˜demailly/books.html.
- J-P. Demailly, Vanishing theorems for tensor powers of an ample vector bundle. Invent. Math. 91 (1988), 203–220. MR 918242 (89d:32066)
- J-P. Demailly, T. Peternell and M. Schneider, Compact complex manifolds with numerically effective tangent bundles. J. Alg. Geom. 3 (1994), 295–345. MR 1257325 (95f:32037)
- J-P. Demailly and H. Skoda, Relations entre les notions de positivité de P.A. Griffiths et de S. Nakano, Séminaire P. Lelong-H. Skoda (Analyse), année 1978/79, Lecture Notes in Math. No. 822, Springer-Verlag, Berlin (1980) 304–309. MR 599033 (82h:32028)
- T. Fujita, On adjoint bundles of ample vector bundles. Proc. Complex Alg. Var., Bayreuth 1990; Lecture Notes in Math. 105–112. Springer 1991. MR 1178722 (93j:14052)
- P. Griffiths, Hermitian differential geometry, Chern classes and positive vector bundles, Global Analysis, papers in honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 181–251. MR 0258070 (41:2717)
- P. Griffiths and J. Harris, Principles of algebraic geometry. Wiley, New York (1978). MR 507725 (80b:14001)
- R. Hartshorne, Ample vector bundles, Publ. Math. I.H.E.S. 29 (1966), 319–350. MR 0193092 (33:1313)
- L. Hörmander, $L^2$ estimates and existence theorems for the $\bar {\partial }$ operator, Acta Math. 113 (1965), 89–152. MR 0179443 (31:3691)
- L. Hörmander, An introduction to complex analysis in several complex variables. D. Van Nostrand Co., Inc., 1966. MR 0203075 (34:2933)
- H. Ishihara, Some adjunction properties of ample vector bundles. Canad. Math. Bull. 44 (2001), No. 4, 452–458. MR 1863637 (2002g:14062)
- R. Lazarsfeld, Positivity in algebraic geometry. I, II. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2004. MR 2095471 (2005k:14001a)
- F. Laytimi and W. Nahm, A generalization of Le Potier’s vanishing theorem, Manuscripta Math. 113 (2004), 165–189. MR 2128545 (2005k:14034)
- F. Laytimi and W. Nahm, On a vanishing problem of Demailly. Int. Math. Res. Not. 47 (2005), 2877–2889. MR 2192217 (2006k:32042)
- K. Liu, X. Sun and S-T. Yau, Canonical metrics on the moduli space of Riemann Surfaces I. J. Differential Geom. 68 (2004), 571–637. MR 2144543 (2007g:32009)
- X. Ma and W. Zhang, Superconnection and family Bergman kernels. C. R. Math. Acad. Sci. Paris 344 (2007), no. 1, 41–44. MR 2286586 (2007k:32023)
- L. Manivel, Vanishing theorems for ample vector bundles. Invent. Math. 127 (1997), 401–416. MR 1427625 (98e:14016)
- S. Mori, Projective manifolds with ample tangent bundles. Ann. of Math. (2) 110 (1979), no. 3, 593–606. MR 554387 (81j:14010)
- C. Mourougane and S. Takayama, Hodge metrics and positivity of direct images. J. Reine Angew. Math. 606 (2007), 167–178. MR 2337646 (2008g:32034)
- C. Mourougane and S. Takayama, Hodge metrics and the curvature of higher direct images. Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 6, 905–924. MR 2504108 (2010b:32032)
- S. Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955) 1–12. MR 0073263 (17:409b)
- T. Peternell, A characterisation of $\P ^n$ by vector bundles. Math. Z. 205 (1990), 487–490. MR 1082869 (92a:14044)
- T. Peternell, J. Le Potier and M. Schneider, Vanishing theorems, linear and quadratic normality. Invent. Math. 87 (1987), 573–586. MR 874037 (88d:14031)
- G. Schumacher, On the geometry of moduli spaces. Manuscripta Math. 50 (1985), 229–267. MR 784145 (86j:32049)
- G. Schumacher, Curvature of higher direct images and applications. arXiv:1002.4858.
- B. Shiffman and A.J. Sommese, Vanishing theorems on complex manifolds. Progress in Mathematics, 56. Birkhäuser, 1985. MR 782484 (86h:32048)
- Y.T. Siu, Curvature of the Weil-Petersson metric in the moduli space of compact Kähler-Einstein manifolds of negative first Chern class. Contributions to Complex Analysis, Papers in Honour of Wilhelm Stoll, Vieweg, Braunschweig, 1986. MR 859202 (87k:32042)
- Y.T. Siu and S-T. Yau, Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59 (1980), no. 2, 189–204. MR 577360 (81h:58029)
- G. Tian, On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867 (91j:32031)
- H. Umemura, Some results in the theory of vector bundles. Nagoya Math. J. 52 (1973), 97–128. MR 0337968 (49:2737)
- S. Wolpert, Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85 (1986), no. 1, 119–145. MR 842050 (87j:32070)
- Y-G. Ye and Q. Zhang, On ample vector bundles whose adjunction bundles are not numerically effective. Duke Math. J. 60 (1990), 671–687. MR 1054530 (91g:14040)
Additional Information
Kefeng Liu
Affiliation:
Center of Mathematical Science, Zhejiang University, Hangzhou 310027, P. R. China
Address at time of publication:
Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095
Email:
liu@math.ucla.edu
Xiaofeng Sun
Affiliation:
Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015
Email:
xis205@lehigh.edu
Xiaokui Yang
Affiliation:
Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095
Email:
xkyang@math.ucla.edu
Received by editor(s):
July 2, 2010
Received by editor(s) in revised form:
January 5, 2011, January 25, 2011, and February 15, 2011
Published electronically:
August 9, 2012
Additional Notes:
The first author was supported in part by NSF Grant #1007053.