Moduli of parabolic connections on curves and the Riemann-Hilbert correspondence
Author:
Michi-aki Inaba
Journal:
J. Algebraic Geom. 22 (2013), 407-480
DOI:
https://doi.org/10.1090/S1056-3911-2013-00621-9
Published electronically:
February 14, 2013
MathSciNet review:
3048542
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $(C,\mathbf {t})$ ($\mathbf {t}=(t_1,\ldots ,t_n)$) be an $n$-pointed smooth projective curve of genus $g$ and take an element $\boldsymbol {\lambda }=(\lambda ^{(i)}_j)\in \mathbf {C}^{nr}$ such that $-\sum _{i,j}\lambda ^{(i)}_j=d\in \mathbf {Z}$. For a weight $\boldsymbol {\alpha }$, let $M_C^{\boldsymbol {\alpha }}(\mathbf {t},\boldsymbol {\lambda })$ be the moduli space of $\boldsymbol {\alpha }$-stable $(\mathbf {t},\boldsymbol {\lambda })$-parabolic connections on $C$ and let $RP_r(C,\mathbf {t})_{\mathbf {a}}$ be the moduli space of representations of the fundamental group $\pi _1(C\setminus \{t_1,\ldots ,t_n\},*)$ with the local monodromy data $\mathbf {a}$ for a certain $\mathbf {a}\in \mathbf {C}^{nr}$. Then we prove that the morphism $\mathbf {RH}:M_C^{\boldsymbol {\alpha }}(\mathbf {t},\boldsymbol {\lambda })\rightarrow RP_r(C,\mathbf {t})_{\mathbf {a}}$ determined by the Riemann-Hilbert correspondence is a proper surjective bimeromorphic morphism. As a corollary, we prove the geometric Painlevé property of the isomonodromic deformation defined on the moduli space of parabolic connections.
References
- D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of ${\rm SL}(2)$-bundles with connections on ${\bf P}^1_s \{x_1,\cdots , x_4\}$, Math. Res. Lett. 4 (1997), no. 2-3, 181–190. MR 1453052, DOI https://doi.org/10.4310/MRL.1997.v4.n2.a1
- D. Arinkin and S. Lysenko, On the moduli of ${\rm SL}(2)$-bundles with connections on ${\bf P}^1_s \{x_1,\cdots ,x_4\}$, Internat. Math. Res. Notices 19 (1997), 983–999. MR 1488348, DOI https://doi.org/10.1155/S1073792897000639
- D. Arinkin, Orthogonality of natural sheaves on moduli stacks of $\rm SL(2)$-bundles with connections on $\Bbb P^1$ minus 4 points, Selecta Math. (N.S.) 7 (2001), no. 2, 213–239. MR 1860014, DOI https://doi.org/10.1007/PL00001401
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 0417174
- Edward Formanek, The invariants of $n\times n$ matrices, Invariant theory, Lecture Notes in Math., vol. 1278, Springer, Berlin, 1987, pp. 18–43. MR 924163, DOI https://doi.org/10.1007/BFb0078804
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
- Michi-aki Inaba, Katsunori Iwasaki, and Masa-Hiko Saito, Moduli of stable parabolic connections, Riemann-Hilbert correspondence and geometry of Painlevé equation of type VI. I, Publ. Res. Inst. Math. Sci. 42 (2006), no. 4, 987–1089. MR 2289083
- M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of Stable Parabolic Connections, Riemann-Hilbert correspondence and Geometry of Painlevé equation of type $VI$, Part II, Moduli spaces and arithmetic geometry, 387–432, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006.
- M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the sixth Pailevé Equations, Théories asymptotiques et équations de Painlevé, 103–167, Sémin. Congr., 14, Soc. Math. France, Paris, 2006. (math.AG/0501007)
- Katsunori Iwasaki, Moduli and deformation for Fuchsian projective connections on a Riemann surface, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), no. 3, 431–531. MR 1146359
- Katsunori Iwasaki, Fuchsian moduli on a Riemann surface—its Poisson structure and Poincaré-Lefschetz duality, Pacific J. Math. 155 (1992), no. 2, 319–340. MR 1178029
- Michio Jimbo, Tetsuji Miwa, and Kimio Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function, Phys. D 2 (1981), no. 2, 306–352. MR 630674, DOI https://doi.org/10.1016/0167-2789%2881%2990013-0
- Michio Jimbo and Tetsuji Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), no. 3, 407–448. MR 625446, DOI https://doi.org/10.1016/0167-2789%2881%2990021-X
- Hiraku Nakajima, Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 199–208. MR 1397988
- Nitin Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math. Soc. 6 (1993), no. 3, 597–609. MR 1182671, DOI https://doi.org/10.1090/S0894-0347-1993-1182671-2
- Kazuo Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. (N.S.) 5 (1979), no. 1, 1–79 (French). MR 614694, DOI https://doi.org/10.4099/math1924.5.1
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5–79 (1995). MR 1320603
References
- D. Arinkin and S. Lysenko, Isomorphisms between moduli spaces of $\textrm {SL}(2)$-bundles with connections on $\textbf {P}^1\setminus \{x_1,\cdots , x_4\}$, Math. Res. Lett. 4, 1997 no. 2-3, 181–190. MR 1453052 (98h:14012)
- D. Arinkin and S. Lysenko, On the moduli of $\textrm {SL}(2)$-bundles with connections on $\textbf {P}^1\setminus \{x_1,\cdots ,x_4\}$, Internat. Math. Res. Notices 1997, no. 19, 983–999. MR 1488348 (99c:14013)
- D. Arinkin, Orthogonality of natural sheaves on moduli stacks of $\rm SL(2)$-bundles with connections on $\Bbb P^ 1$ minus 4 points, Selecta Math. 7, 2001, no. 2, 213–239. MR 1860014 (2003a:14010)
- P. Deligne, Équations différentielles à points singuliers réguliers, Springer-Verlag, Berlin, 1970, Lecture Notes in Mathematics, Vol. 163. MR 0417174 (54:5232)
- E. Formanek, The invariants of $n \times n$ matrices, Invariant Theory (S.S. Koh, eds.)., Lecture Notes in Math. vol. 1278, Springer Verlag, 1987, pp. 18–43. MR 924163 (88m:16018)
- D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870 (98g:14012)
- M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of Stable Parabolic Connections, Riemann-Hilbert correspondence and Geometry of Painlevé equation of type $VI$, Part I, Publ. Res. Inst. Math. Sci. 42 (2006), no. 4, 987–1089 (math.AG/0309342) MR 2289083 (2008k:32040)
- M. Inaba, K. Iwasaki and M.-H. Saito, Moduli of Stable Parabolic Connections, Riemann-Hilbert correspondence and Geometry of Painlevé equation of type $VI$, Part II, Moduli spaces and arithmetic geometry, 387–432, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006.
- M. Inaba, K. Iwasaki and M.-H. Saito, Dynamics of the sixth Pailevé Equations, Théories asymptotiques et équations de Painlevé, 103–167, Sémin. Congr., 14, Soc. Math. France, Paris, 2006. (math.AG/0501007)
- K. Iwasaki, Moduli and deformation for Fuchsian projective connections on a Riemann surface, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), no. 3, 431–531. MR 1146359 (92m:32039)
- K. Iwasaki, Fuchsian moduli on a Riemann surface—its Poisson structure and Poincare’-Lefschetz duality, Pacific J. Math. 155 (1992), no. 2, 319–340. MR 1178029 (93j:32028)
- M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and $\tau$-function, Physica 2D (1981), 306–352. MR 630674 (83k:34010a)
- M. Jimbo and T. Miwa, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II., Physica 2D (1981), 407–448. MR 625446 (83k:34010b)
- H. Nakajima, Hyper-Kähler structures on moduli spaces of parabolic Higgs bundles on Riemann surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), 199–208, Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996. MR 1397988 (97k:32030)
- N. Nitsure, Moduli of semistable logarithmic connections, J. Amer. Math. Soc. 6 (1993), no 3, 597–609. MR 1182671 (93i:32025)
- K. Okamoto, Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé, Japan. J. Math. 5, 1979, no. 1, 1–79. MR 614694 (83m:58005)
- C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994), no. 79, 47–129. MR 1307297 (96e:14012)
- C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. (1994), no. 80, 5–79 (1995). MR 1320603 (96e:14013)
Additional Information
Michi-aki Inaba
Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
Email:
inaba@math.kyoto-u.ac.jp
Received by editor(s):
August 4, 2009
Received by editor(s) in revised form:
November 25, 2010, and July 30, 2012
Published electronically:
February 14, 2013
Article copyright:
© Copyright 2013
University Press, Inc.