Twisted Kodaira-Spencer classes and the geometry of surfaces of general type
Authors:
Daniel Naie and Igor Reider
Journal:
J. Algebraic Geom. 23 (2014), 165-200
DOI:
https://doi.org/10.1090/S1056-3911-2013-00609-8
Published electronically:
August 6, 2013
MathSciNet review:
3121851
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We study the cohomology groups $H^1(X,\Theta _X(-mK_X))$, for $m\geq 1$, where $X$ is a smooth minimal complex surface of general type, $\Theta _X$ its holomorphic tangent bundle, and $K_X$ its canonical divisor. One of the main results is a precise vanishing criterion for $H^1(X,\Theta _X (-K_X))$ (Theorem 1.1).
The proof is based on the geometric interpretation of non-zero cohomology classes of $H^1(X,\Theta _X (-K_X))$. This interpretation in turn uses higher rank vector bundles on $X$.
We apply our methods to the long standing conjecture saying that the irregularity of surfaces in $\mathbb {P}^4$ is at most $2$. We show that if $X$ has bounded holomorphic Euler characteristic, no irrational pencil, and is embedded in $\mathbb {P}^4$ with a sufficiently large degree, then the irregularity of $X$ is at most $3$.
References
- Edoardo Ballico and Luca Chiantini, On smooth subcanonical varieties of codimension $2$ in ${\bf P}^{n},$ $n\geq 4$, Ann. Mat. Pura Appl. (4) 135 (1983), 99–117 (1984). MR 750529, DOI https://doi.org/10.1007/BF01781064
- Arnaud Beauville, Surfaces algébriques complexes, Société Mathématique de France, Paris, 1978 (French). Avec une sommaire en anglais; Astérisque, No. 54. MR 0485887
- F. A. Bogomolov, Unstable vector bundles and curves on surfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 517–524. MR 562649
- Olivier Debarre, Théorèmes de connexité et variétés abéliennes, Amer. J. Math. 117 (1995), no. 3, 787–805 (French). MR 1333945, DOI https://doi.org/10.2307/2375089
- Wolfram Decker and Frank-Olaf Schreyer, Non-general type surfaces in ${\bf P}^4$: some remarks on bounds and constructions, J. Symbolic Comput. 29 (2000), no. 4-5, 545–582. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769655, DOI https://doi.org/10.1006/jsco.1999.0323
- Geir Ellingsrud and Christian Peskine, Sur les surfaces lisses de ${\bf P}_4$, Invent. Math. 95 (1989), no. 1, 1–11 (French). MR 969410, DOI https://doi.org/10.1007/BF01394141
- Laurent Gruson and Christian Peskine, Genre des courbes de l’espace projectif, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 31–59 (French). MR 527229
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- G. Horrocks and D. Mumford, A rank $2$ vector bundle on ${\bf P}^{4}$ with $15,000$ symmetries, Topology 12 (1973), 63–81. MR 382279, DOI https://doi.org/10.1016/0040-9383%2873%2990022-0
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328–466. MR 112154, DOI https://doi.org/10.2307/1970009
- Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898. MR 186672, DOI https://doi.org/10.2307/2373252
- Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), no. 2, 159–171. MR 744605, DOI https://doi.org/10.1007/BF01456083
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- Igor Reider, Geography and the number of moduli of surfaces of general type, Asian J. Math. 9 (2005), no. 3, 407–448. MR 2215200, DOI https://doi.org/10.4310/AJM.2005.v9.n3.a7
- Leonard Roth, On the Projective Classification of Surfaces, Proc. London Math. Soc. (2) 42 (1936), no. 2, 142–170. MR 1577025, DOI https://doi.org/10.1112/plms/s2-42.1.142
References
- Edoardo Ballico and Luca Chiantini, On smooth subcanonical varieties of codimension $2$ in $\textbf {P}^{n},$ $n\geq 4$, Ann. Mat. Pura Appl. (4) 135 (1983), 99–117 (1984). MR 750529 (86d:14047), DOI https://doi.org/10.1007/BF01781064
- Arnaud Beauville, Surfaces algébriques complexes, Société Mathématique de France, Paris, 1978 (French). Avec une sommaire en anglais; Astérisque, No. 54. MR 0485887 (58 \#5686)
- F. A. Bogomolov, Unstable vector bundles and curves on surfaces, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 517–524. MR 562649 (81k:14013)
- Olivier Debarre, Théorèmes de connexité et variétés abéliennes, Amer. J. Math. 117 (1995), no. 3, 787–805 (French). MR 1333945 (96j:14009), DOI https://doi.org/10.2307/2375089
- Wolfram Decker and Frank-Olaf Schreyer, Non-general type surfaces in $\textbf {P}^4$: some remarks on bounds and constructions, J. Symbolic Comput. 29 (2000), no. 4-5, 545–582. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769655 (2002a:14064), DOI https://doi.org/10.1006/jsco.1999.0323
- Geir Ellingsrud and Christian Peskine, Sur les surfaces lisses de $\textbf {P}_4$, Invent. Math. 95 (1989), no. 1, 1–11 (French). MR 969410 (89j:14023), DOI https://doi.org/10.1007/BF01394141
- Laurent Gruson and Christian Peskine, Genre des courbes de l’espace projectif, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) Lecture Notes in Math., vol. 687, Springer, Berlin, 1978, pp. 31–59 (French). MR 527229 (81e:14019)
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 \#3116)
- G. Horrocks and D. Mumford, A rank $2$ vector bundle on $\textbf {P}^{4}$ with $15,000$ symmetries, Topology 12 (1973), 63–81. MR 0382279 (52 \#3164)
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328–466. MR 0112154 (22 \#3009)
- Joseph Lipman, Free derivation modules on algebraic varieties, Amer. J. Math. 87 (1965), 874–898. MR 0186672 (32 \#4130)
- Yoichi Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann. 268 (1984), no. 2, 159–171. MR 744605 (85j:14060), DOI https://doi.org/10.1007/BF01456083
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser Boston, Mass., 1980. MR 561910 (81b:14001)
- Igor Reider, Geography and the number of moduli of surfaces of general type, Asian J. Math. 9 (2005), no. 3, 407–448. MR 2215200 (2007c:14036)
- Leonard Roth, On the Projective Classification of Surfaces, Proc. London Math. Soc. S2-42, no. 1, 142. MR 1577025, DOI https://doi.org/10.1112/plms/s2-42.1.142
Additional Information
Daniel Naie
Affiliation:
Université d’Angers, Département de Mathématiques, 49045 Angers, France
Email:
daniel.naie@univ-angers.fr
Igor Reider
Affiliation:
Université d’Angers, Departement de Mathematique, 2, Bd. Lavoisier, 49045 Angers, France
Email:
igor.reider@univ-angers.fr
Received by editor(s):
February 8, 2011
Received by editor(s) in revised form:
July 21, 2011
Published electronically:
August 6, 2013
Dedicated:
Dedicated to Fedor Bogomolov on his 65th birthday
Article copyright:
© Copyright 2013
University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.