The gonality theorem of Noether for hypersurfaces
Authors:
F. Bastianelli, R. Cortini and P. De Poi
Journal:
J. Algebraic Geom. 23 (2014), 313-339
DOI:
https://doi.org/10.1090/S1056-3911-2013-00603-7
Published electronically:
September 10, 2013
MathSciNet review:
3166393
Full-text PDF
Abstract |
References |
Additional Information
Abstract: It is well known since Noether that the gonality of a smooth curve ${C\subset \mathbb {P}^2}$ of degree $d\geq 4$ is $d-1$. Given a $k$-dimensional complex projective variety $X$, the most natural extension of gonality is probably the degree of irrationality, that is, the minimum degree of a dominant rational map ${X\dashrightarrow \mathbb {P}^k}$. In this paper we are aimed at extending the assertion on plane curves to smooth hypersurfaces in $\mathbb {P}^n$ in terms of degree of irrationality. We prove that both surfaces in $\mathbb {P}^3$ and threefolds in $\mathbb {P}^4$ of sufficiently large degree $d$ have degree of irrationality $d-1$, except for finitely many cases we classify, whose degree of irrationality is $d-2$. To this aim we use Mumford’s technique of induced differentials and we shift the problem to study first order congruences of lines of $\mathbb {P}^n$. In particular, we also slightly improve the description of such congruences in $\mathbb {P}^4$ and we provide a bound on the degree of irrationality of hypersurfaces of arbitrary dimension.
References
- S. I. Agafonov and E. V. Ferapontov, Systems of conservation laws in the setting of the projective theory of congruences: reducible and linearly degenerate systems, Differential Geom. Appl. 17 (2002), no. 2-3, 153–173. 8th International Conference on Differential Geometry and its Applications (Opava, 2001). MR 1925763, DOI https://doi.org/10.1016/S0926-2245%2802%2900105-5
- Enrique Arrondo, Line congruences of low order, Milan J. Math. 70 (2002), 223–243. MR 1936753, DOI https://doi.org/10.1007/s00032-002-0008-4
- Enrique Arrondo, Marina Bertolini, and Cristina Turrini, Focal loci in $G(1,N)$, Asian J. Math. 9 (2005), no. 4, 449–472. MR 2215680, DOI https://doi.org/10.4310/AJM.2005.v9.n4.a1
- Bénédicte Basili, Indice de Clifford des intersections complètes de l’espace, Bull. Soc. Math. France 124 (1996), no. 1, 61–95 (French, with English and French summaries). MR 1395007
- F. Bastianelli, On symmetric products of curves, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2493–2519. MR 2888217, DOI https://doi.org/10.1090/S0002-9947-2012-05378-5
- C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17–43.
- Ciro Ciliberto and Edoardo Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom. 1 (1992), no. 2, 231–250. MR 1144438
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI https://doi.org/10.2307/1970801
- Herbert Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 629–636. MR 875091
- R. Cortini, Il grado di irrazionalità di varietà algebriche, Ph.D. thesis (Politecnico di Torino, 1999).
- P. De Poi, On First Order Congruences of Lines, Ph.D. thesis (SISSA-ISAS, Trieste, 1999).
- Pietro De Poi, On first order congruences of lines of $\Bbb P^4$ with a fundamental curve, Manuscripta Math. 106 (2001), no. 1, 101–116. MR 1860982, DOI https://doi.org/10.1007/PL00005882
- Pietro De Poi, Threefolds in ${\Bbb P}^5$ with one apparent quadruple point, Comm. Algebra 31 (2003), no. 4, 1927–1947. MR 1972898, DOI https://doi.org/10.1081/AGB-120018514
- Pietro De Poi, Congruences of lines with one-dimensional focal locus, Port. Math. (N.S.) 61 (2004), no. 3, 329–338. MR 2098024
- Pietro De Poi, On first order congruences of lines in ${\Bbb P}^4$ with irreducible fundamental surface, Math. Nachr. 278 (2005), no. 4, 363–378. MR 2121565, DOI https://doi.org/10.1002/mana.200310246
- Pietro De Poi, On first order congruences of lines in $\Bbb P^4$ with generically non-reduced fundamental surface, Asian J. Math. 12 (2008), no. 1, 55–64. MR 2415011, DOI https://doi.org/10.4310/AJM.2008.v12.n1.a4
- Pietro De Poi and Emilia Mezzetti, On congruences of linear spaces of order one, Rend. Istit. Mat. Univ. Trieste 39 (2007), 177–206. MR 2441617
- Pietro De Poi and Emilia Mezzetti, Congruences of lines in $\Bbb P^5$, quadratic normality, and completely exceptional Monge-Ampère equations, Geom. Dedicata 131 (2008), 213–230. MR 2369200, DOI https://doi.org/10.1007/s10711-007-9228-7
- I. V. Dolgačev, Special algebraic $K3$-surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 833–847 (Russian). MR 0332798
- G. Fano, Sulle congruenze di rette del terzo ordine prive di linea singolare, Att. Acc. di Scienze Torino 29 (1894), 474–493.
- Gavril Farkas, Brill-Noether loci and the gonality stratification of $\scr M_g$, J. Reine Angew. Math. 539 (2001), 185–200. MR 1863860, DOI https://doi.org/10.1515/crll.2001.074
- Phillip Griffiths and Joseph Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), no. 3, 461–505. MR 512429, DOI https://doi.org/10.2307/1971184
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Robin Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), no. 3, 375–386. MR 857224, DOI https://doi.org/10.1215/kjm/1250520873
- Robin Hartshorne and Enrico Schlesinger, Gonality of a general ACM curve in $\Bbb P^3$, Pacific J. Math. 251 (2011), no. 2, 269–313. MR 2811034, DOI https://doi.org/10.2140/pjm.2011.251.269
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172
- Kazuhiro Konno, Minimal pencils on smooth surfaces in $\Bbb P^3$, Osaka J. Math. 45 (2008), no. 3, 789–805. MR 2468594
- Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin-New York, 1975. Volume II: Function theory, geometry and miscellaneous; Edited and with a foreword by André Weil. MR 0465761
- Angelo Felice Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991), no. 438, x+100. MR 1043786, DOI https://doi.org/10.1090/memo/0438
- Angelo Felice Lopez and Gian Pietro Pirola, On the curves through a general point of a smooth surface in $\mathbf P^3$, Math. Z. 219 (1995), no. 1, 93–106. MR 1340851, DOI https://doi.org/10.1007/BF02572352
- G. Marletta, Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo 28 (1909), 353–399.
- G. Martens, The gonality of curves on a Hirzebruch surface, Arch. Math. (Basel) 67 (1996), no. 4, 349–352. MR 1407339, DOI https://doi.org/10.1007/BF01197600
- T. T. Moh and W. J. Heinzer, A generalized Lüroth theorem for curves, J. Math. Soc. Japan 31 (1979), no. 1, 85–86. MR 519037, DOI https://doi.org/10.2969/jmsj/03110085
- T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weierstrass canonical divisors, J. Algebra 77 (1982), no. 1, 62–73. MR 665164, DOI https://doi.org/10.1016/0021-8693%2882%2990277-0
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 249428, DOI https://doi.org/10.1215/kjm/1250523940
- Makoto Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Mathematics, vol. 767, Springer, Berlin, 1979. MR 555241
- M. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. d. Konig. Akad. d. Wiss., Berlin (1883).
- Ziv Ran, Surfaces of order $1$ in Grassmannians, J. Reine Angew. Math. 368 (1986), 119–126. MR 850617, DOI https://doi.org/10.1515/crll.1986.368.119
- C. Segre, Preliminari di una teoria di vatietà luoghi di spazi, Rend. Circ. Mat. Palermo 30 (1910), 87–121.
- Hiro-o Tokunaga and Hisao Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra 174 (1995), no. 3, 1111–1121. MR 1337188, DOI https://doi.org/10.1006/jabr.1995.1170
- Claire Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), no. 1, 200–213. MR 1420353
- Geng Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139–172. MR 1258918
- Hisao Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra 167 (1994), no. 3, 634–640. MR 1287064, DOI https://doi.org/10.1006/jabr.1994.1206
- Hisao Yoshihara, A note on the inequality of degrees of irrationalities of algebraic surfaces, J. Algebra 207 (1998), no. 1, 272–275. MR 1643098, DOI https://doi.org/10.1006/jabr.1998.7464
References
- S. I. Agafonov and E. V. Ferapontov, Systems of conservation laws in the setting of the projective theory of congruences: reducible and linearly degenerate systems, Differential Geom. Appl. 17 (2002), no. 2-3, 153–173. 8th International Conference on Differential Geometry and its Applications (Opava, 2001). MR 1925763 (2003j:53014), DOI https://doi.org/10.1016/S0926-2245%2802%2900105-5
- Enrique Arrondo, Line congruences of low order, Milan J. Math. 70 (2002), 223–243. MR 1936753 (2003h:14080), DOI https://doi.org/10.1007/s00032-002-0008-4
- Enrique Arrondo, Marina Bertolini, and Cristina Turrini, Focal loci in $G(1,N)$, Asian J. Math. 9 (2005), no. 4, 449–472. MR 2215680 (2007b:14118)
- Bénédicte Basili, Indice de Clifford des intersections complètes de l’espace, Bull. Soc. Math. France 124 (1996), no. 1, 61–95 (French, with English and French summaries). MR 1395007 (97f:14048)
- F. Bastianelli, On symmetric products of curves, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2493–2519. MR 2888217, DOI https://doi.org/10.1090/S0002-9947-2012-05378-5
- C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17–43.
- Ciro Ciliberto and Edoardo Sernesi, Singularities of the theta divisor and congruences of planes, J. Algebraic Geom. 1 (1992), no. 2, 231–250. MR 1144438 (92j:14034)
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 0302652 (46 \#1796)
- Herbert Clemens, Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 629–636. MR 875091 (88c:14037)
- R. Cortini, Il grado di irrazionalità di varietà algebriche, Ph.D. thesis (Politecnico di Torino, 1999).
- P. De Poi, On First Order Congruences of Lines, Ph.D. thesis (SISSA-ISAS, Trieste, 1999).
- Pietro De Poi, On first order congruences of lines of $\mathbb {P}^4$ with a fundamental curve, Manuscripta Math. 106 (2001), no. 1, 101–116. MR 1860982 (2003c:14058), DOI https://doi.org/10.1007/PL00005882
- Pietro De Poi, Threefolds in ${\mathbb {P}}^5$ with one apparent quadruple point, Comm. Algebra 31 (2003), no. 4, 1927–1947. MR 1972898 (2004m:14083), DOI https://doi.org/10.1081/AGB-120018514
- Pietro De Poi, Congruences of lines with one-dimensional focal locus, Port. Math. (N.S.) 61 (2004), no. 3, 329–338. MR 2098024 (2006b:14087)
- Pietro De Poi, On first order congruences of lines in ${\mathbb {P}}^4$ with irreducible fundamental surface, Math. Nachr. 278 (2005), no. 4, 363–378. MR 2121565 (2005k:14115), DOI https://doi.org/10.1002/mana.200310246
- Pietro De Poi, On first order congruences of lines in $\mathbb {P}^4$ with generically non-reduced fundamental surface, Asian J. Math. 12 (2008), no. 1, 55–64. MR 2415011 (2010e:14049)
- Pietro De Poi and Emilia Mezzetti, On congruences of linear spaces of order one, Rend. Istit. Mat. Univ. Trieste 39 (2007), 177–206. MR 2441617 (2009f:14103)
- Pietro De Poi and Emilia Mezzetti, Congruences of lines in $\mathbb {P}^5$, quadratic normality, and completely exceptional Monge-Ampère equations, Geom. Dedicata 131 (2008), 213–230. MR 2369200 (2008k:14099), DOI https://doi.org/10.1007/s10711-007-9228-7
- I. V. Dolgačev, Special algebraic $K3$-surfaces. I, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 833–847 (Russian). MR 0332798 (48 \#11124)
- G. Fano, Sulle congruenze di rette del terzo ordine prive di linea singolare, Att. Acc. di Scienze Torino 29 (1894), 474–493.
- Gavril Farkas, Brill-Noether loci and the gonality stratification of $\mathcal {M}_g$, J. Reine Angew. Math. 539 (2001), 185–200. MR 1863860 (2002m:14024), DOI https://doi.org/10.1515/crll.2001.074
- Phillip Griffiths and Joseph Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), no. 3, 461–505. MR 512429 (80d:14006), DOI https://doi.org/10.2307/1971184
- Robin Hartshorne, Ample subvarieties of algebraic varieties, Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin, 1970. MR 0282977 (44 \#211)
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 \#3116)
- Robin Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), no. 3, 375–386. MR 857224 (87k:14036)
- Robin Hartshorne and Enrico Schlesinger, Gonality of a general ACM curve in $\mathbb {P}^3$, Pacific J. Math. 251 (2011), no. 2, 269–313. MR 2811034 (2012f:14062), DOI https://doi.org/10.2140/pjm.2011.251.269
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172 (45 \#266)
- Kazuhiro Konno, Minimal pencils on smooth surfaces in $\mathbb {P}^3$, Osaka J. Math. 45 (2008), no. 3, 789–805. MR 2468594 (2009i:14051)
- Ernst Eduard Kummer, Collected papers, Springer-Verlag, Berlin, 1975. Volume II: Function theory, geometry and miscellaneous; Edited and with a foreword by André Weil. MR 0465761 (57 \#5650b)
- Angelo Felice Lopez, Noether-Lefschetz theory and the Picard group of projective surfaces, Mem. Amer. Math. Soc. 89 (1991), no. 438, x+100. MR 1043786 (91f:14030)
- Angelo Felice Lopez and Gian Pietro Pirola, On the curves through a general point of a smooth surface in $\mathbf {P}^3$, Math. Z. 219 (1995), no. 1, 93–106. MR 1340851 (96h:14024), DOI https://doi.org/10.1007/BF02572352
- G. Marletta, Sui complessi di rette del primo ordine dello spazio a quattro dimensioni, Rend. Circ. Mat. Palermo 28 (1909), 353–399.
- G. Martens, The gonality of curves on a Hirzebruch surface, Arch. Math. (Basel) 67 (1996), no. 4, 349–352. MR 1407339 (97k:14036), DOI https://doi.org/10.1007/BF01197600
- T. T. Moh and W. J. Heinzer, A generalized Lüroth theorem for curves, J. Math. Soc. Japan 31 (1979), no. 1, 85–86. MR 519037 (80c:14017), DOI https://doi.org/10.2969/jmsj/03110085
- T. T. Moh and W. Heinzer, On the Lüroth semigroup and Weierstrass canonical divisors, J. Algebra 77 (1982), no. 1, 62–73. MR 665164 (83k:14027), DOI https://doi.org/10.1016/0021-8693%2882%2990277-0
- D. Mumford, Rational equivalence of $0$-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968), 195–204. MR 0249428 (40 \#2673)
- Makoto Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Mathematics, vol. 767, Springer, Berlin, 1979. MR 555241 (82i:32046)
- M. Noether, Zur Grundlegung der Theorie der algebraischen Raumcurven, Verl. d. Konig. Akad. d. Wiss., Berlin (1883).
- Ziv Ran, Surfaces of order $1$ in Grassmannians, J. Reine Angew. Math. 368 (1986), 119–126. MR 850617 (87j:14061), DOI https://doi.org/10.1515/crll.1986.368.119
- C. Segre, Preliminari di una teoria di vatietà luoghi di spazi, Rend. Circ. Mat. Palermo 30 (1910), 87–121.
- Hiro-o Tokunaga and Hisao Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra 174 (1995), no. 3, 1111–1121. MR 1337188 (96e:14039), DOI https://doi.org/10.1006/jabr.1995.1170
- Claire Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), no. 1, 200–213. MR 1420353 (97j:14047)
- Geng Xu, Subvarieties of general hypersurfaces in projective space, J. Differential Geom. 39 (1994), no. 1, 139–172. MR 1258918 (95d:14043)
- Hisao Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra 167 (1994), no. 3, 634–640. MR 1287064 (95g:14039), DOI https://doi.org/10.1006/jabr.1994.1206
- Hisao Yoshihara, A note on the inequality of degrees of irrationalities of algebraic surfaces, J. Algebra 207 (1998), no. 1, 272–275. MR 1643098 (99k:14058), DOI https://doi.org/10.1006/jabr.1998.7464
Additional Information
F. Bastianelli
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via Cozzi 53, 20125 Milano, Italy
MR Author ID:
878934
Email:
francesco.bastianelli@unimib.it
R. Cortini
Affiliation:
I. T. G. Fazzini-Mercantini, via Salvo D’Acquisto 30, 63013 Grottammare (AP) - Italy
Email:
renzacortini@fazzinimercantini.it
P. De Poi
Affiliation:
Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, 33100 Udine - Italy
MR Author ID:
621166
ORCID:
0000-0002-6741-6612
Email:
pietro.depoi@uniud.it
Received by editor(s):
February 28, 2011
Received by editor(s) in revised form:
May 19, 2011
Published electronically:
September 10, 2013
Additional Notes:
The first author has been partially supported by Istituto Nazionale di Alta Matematica “F. Severi”; FAR 2010 (PV) “Varietà algebriche, calcolo algebrico, grafi orientati e topologici”, and INdAM (GNSAGA). The third author has been partially supported by MIUR, project “Geometria delle varietà algebriche e dei loro spazi di moduli”
Article copyright:
© Copyright 2013
University Press, Inc.
The copyright for this article reverts to public domain 28 years after publication.