On exotic affine $3$-spheres
Authors:
Adrien Dubouloz and David R. Finston
Journal:
J. Algebraic Geom. 23 (2014), 445-469
DOI:
https://doi.org/10.1090/S1056-3911-2014-00612-3
Published electronically:
January 31, 2014
MathSciNet review:
3205588
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Every $\mathbb {A}^{1}$-bundle over $\mathbb {A}_{\ast }^{2},$ the complex affine plane punctured at the origin, is trivial in the differentiable category, but there are infinitely many distinct isomorphy classes of algebraic bundles. Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine $3$-sphere $\mathbb {S}_{\mathbb {C}}^{3},$ given by $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=1,$ admits such a structure with an additional homogeneity property. Total spaces of nontrivial homogeneous $\mathbb {A}^{1}$-bundles over $\mathbb {A}_{\ast }^{2}$ are classified up to $\mathbb {G}_{m}$-equivariant algebraic isomorphism, and a criterion for nonisomorphy is given. In fact $\mathbb {S}_{\mathbb {C}}^{3}$ is not isomorphic as an abstract variety to the total space of any $\mathbb {A}^{1}$-bundle over $\mathbb {A}_{\ast }^{2}$ of different homogeneous degree, which gives rise to the existence of exotic spheres, a phenomenon that first arises in dimension three. As a byproduct, an example is given of two biholomorphic but not algebraically isomorphic threefolds, both with a trivial Makar-Limanov invariant, and with isomorphic cylinders.
References
- Makoto Abe, Steinness of the total space of a non-trivial algebraic affine $\Bbb C$-bundle on the punctured complex affine plane, Math. Nachr. 238 (2002), 16–22. MR 1900817, DOI https://doi.org/10.1002/1522-2616%28200205%29238%3A1%3C16%3A%3AAID-MANA16%3E3.3.CO%3B2-B
- I. V. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg, Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity, preprint arXiv:1003.3164 (2010).
- Tatiana Bandman and Leonid Makar-Limanov, Nonstability of the AK invariant, Michigan Math. J. 53 (2005), no. 2, 263–281. MR 2152699, DOI https://doi.org/10.1307/mmj/1123090767
- H. Brenner, Some remarks on the affineness of $\mathbb {A}^{1}$-bundles, preprint arXiv:1111.1594 (2011).
- Adrien Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004), no. 2, 289–308. MR 2069802, DOI https://doi.org/10.1307/mmj/1091112077
- Adrien Dubouloz, The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant, Transform. Groups 14 (2009), no. 3, 531–539. MR 2534798, DOI https://doi.org/10.1007/s00031-009-9051-3
- A. Dubouloz, D. Finston, and P. D. Metha, Factorial threefolds with $\mathbb {G}_a$-actions, preprint arXiv:0902.3873v1 (2009).
- Adrien Dubouloz, Lucy Moser-Jauslin, and P.-M. Poloni, Noncancellation for contractible affine threefolds, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4273–4284. MR 2823073, DOI https://doi.org/10.1090/S0002-9939-2011-10869-4
- David R. Finston and Stefan Maubach, The automorphism group of certain factorial threefolds and a cancellation problem, Israel J. Math. 163 (2008), 369–381. MR 2391136, DOI https://doi.org/10.1007/s11856-008-0016-3
- Hubert Flenner, Shulim Kaliman, and Mikhail Zaidenberg, On the Danilov-Gizatullin isomorphism theorem, Enseign. Math. (2) 55 (2009), no. 3-4, 275–283. MR 2583780, DOI https://doi.org/10.4171/LEM/55-3-4
- Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin-New York, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253
- M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 1, 54–103, 231 (Russian). MR 0437545
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. Translated from the German by Alan Huckleberry. MR 580152
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. MR 199194
- R. V. Gurjar and M. Miyanishi, Affine surfaces with $\overline \kappa \leq 1$, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 99–124. MR 977756
- R. V. Gurjar and A. R. Shastri, The fundamental group at infinity of affine surfaces, Comment. Math. Helv. 59 (1984), no. 3, 459–484. MR 761808, DOI https://doi.org/10.1007/BF02566361
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689–713. MR 169877, DOI https://doi.org/10.1112/plms/s3-14.4.689
- Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174 (German). MR 8915, DOI https://doi.org/10.1515/crll.1942.184.161
- Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174, DOI https://doi.org/10.1007/BF01236662
- Hartmut Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981/82), no. 2, 319–323. MR 641133, DOI https://doi.org/10.1007/BF01389017
- L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in ${\bf C}^4$ or a ${\bf C}^3$-like threefold which is not ${\bf C}^3$. part B, Israel J. Math. 96 (1996), no. part B, 419–429. MR 1433698, DOI https://doi.org/10.1007/BF02937314
- Masayoshi Miyanishi, Noncomplete algebraic surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, Berlin-New York, 1981. MR 635930
- Masayoshi Miyanishi, Algebraic characterizations of the affine $3$-space, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 53–67. MR 966444
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- M. Pavaman Murthy, Cancellation problem for projective modules over certain affine algebras, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 493–507. MR 1940679
- C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69–88. MR 286801, DOI https://doi.org/10.2307/1970735
- M. Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999), no. 5, 3–73 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 703–760. MR 1734345
References
- Makoto Abe, Steinness of the total space of a non-trivial algebraic affine $\mathbb {C}$-bundle on the punctured complex affine plane, Math. Nachr. 238 (2002), 16–22. MR 1900817 (2003d:32021)
- I. V. Arzhantsev, K. Kuyumzhiyan, and M. Zaidenberg, Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity, preprint arXiv:1003.3164 (2010).
- Tatiana Bandman and Leonid Makar-Limanov, Nonstability of the AK invariant, Michigan Math. J. 53 (2005), no. 2, 263–281. MR 2152699 (2006b:14110), DOI https://doi.org/10.1307/mmj/1123090767
- H. Brenner, Some remarks on the affineness of $\mathbb {A}^{1}$-bundles, preprint arXiv:1111.1594 (2011).
- Adrien Dubouloz, Completions of normal affine surfaces with a trivial Makar-Limanov invariant, Michigan Math. J. 52 (2004), no. 2, 289–308. MR 2069802 (2005g:14115), DOI https://doi.org/10.1307/mmj/1091112077
- Adrien Dubouloz, The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant, Transform. Groups 14 (2009), no. 3, 531–539. MR 2534798 (2011a:14121), DOI https://doi.org/10.1007/s00031-009-9051-3
- A. Dubouloz, D. Finston, and P. D. Metha, Factorial threefolds with $\mathbb {G}_a$-actions, preprint arXiv:0902.3873v1 (2009).
- Adrien Dubouloz, Lucy Moser-Jauslin, and P.-M. Poloni, Noncancellation for contractible affine threefolds, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4273–4284. MR 2823073 (2012e:14116), DOI https://doi.org/10.1090/S0002-9939-2011-10869-4
- David R. Finston and Stefan Maubach, The automorphism group of certain factorial threefolds and a cancellation problem, Israel J. Math. 163 (2008), 369–381. MR 2391136 (2009a:14078), DOI https://doi.org/10.1007/s11856-008-0016-3
- Hubert Flenner, Shulim Kaliman, and Mikhail Zaidenberg, On the Danilov-Gizatullin isomorphism theorem, Enseign. Math. (2) 55 (2009), no. 3-4, 275–283. MR 2583780 (2011d:14106)
- Jean Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin, 1971 (French). Die Grundlehren der mathematischen Wissenschaften, Band 179. MR 0344253 (49 \#8992)
- M. H. Gizatullin and V. I. Danilov, Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 1, 54–103, 231 (Russian). MR 0437545 (55 \#10469)
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin, 1979. Translated from the German by Alan Huckleberry. MR 580152 (82d:32001)
- A. Grothendieck, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 95–103. MR 0199194 (33 \#7343)
- R. V. Gurjar and M. Miyanishi, Affine surfaces with $\overline \kappa \leq 1$, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 99–124. MR 977756 (90b:14044)
- R. V. Gurjar and A. R. Shastri, The fundamental group at infinity of affine surfaces, Comment. Math. Helv. 59 (1984), no. 3, 459–484. MR 761808 (86a:14008), DOI https://doi.org/10.1007/BF02566361
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 \#3116)
- G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689–713. MR 0169877 (30 \#120)
- Heinrich W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174 (German). MR 0008915 (5,74f)
- Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174 (2000f:14099), DOI https://doi.org/10.1007/BF01236662
- Hartmut Lindel, On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981/82), no. 2, 319–323. MR 641133 (83g:13009), DOI https://doi.org/10.1007/BF01389017
- L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in $\textbf {C}^4$ or a $\textbf {C}^3$-like threefold which is not $\textbf {C}^3$. Part B, Israel J. Math. 96 (1996), 419–429. MR 1433698 (98a:14052), DOI https://doi.org/10.1007/BF02937314
- Masayoshi Miyanishi, Noncomplete algebraic surfaces, Lecture Notes in Mathematics, vol. 857, Springer-Verlag, Berlin, 1981. MR 635930 (83b:14011)
- Masayoshi Miyanishi, Algebraic characterizations of the affine $3$-space, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 53–67. MR 966444 (90a:14059)
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906 (95m:14012)
- M. Pavaman Murthy, Cancellation problem for projective modules over certain affine algebras, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 493–507. MR 1940679 (2003j:13010)
- C. P. Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. (2) 94 (1971), 69–88. MR 0286801 (44 \#4010)
- M. Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999), no. 5, 3–73 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 703–760. MR 1734345 (2001d:14069)
Additional Information
Adrien Dubouloz
Affiliation:
Adrien Dubouloz, Institut de Mathématiques de Bourgogne, Université de Bourgogne, 9 avenue Alain Savary - BP 47870, 21078 Dijon cedex, France
Email:
Adrien.Dubouloz@u-bourgogne.fr
David R. Finston
Affiliation:
Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
Address at time of publication:
Department of Mathematics, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210
Email:
dfinston@nmsu.edu, dfinston@brooklyn.cuny.edu
Received by editor(s):
April 27, 2011
Received by editor(s) in revised form:
October 26, 2011, and November 15, 2011
Published electronically:
January 31, 2014
Article copyright:
© Copyright 2014
University Press, Inc.