Tautological sheaves on Hilbert schemes of points
Authors:
Zhilan Wang and Jian Zhou
Journal:
J. Algebraic Geom. 23 (2014), 669-692
DOI:
https://doi.org/10.1090/S1056-3911-2014-00623-8
Published electronically:
April 10, 2014
MathSciNet review:
3263664
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We propose some conjectures on the generating series of (equivariant) Euler characteristics of some vector bundles constructed from the tautological bundles on Hilbert schemes of points on affine $k$-spaces. We establish the surface case of these conjectures and present some verifications of the higher dimensional cases.
References
- George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR 0557013
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI https://doi.org/10.2307/1970717
- S. Boissiere, M. A. Nieper-Wisskirchen, Universal formulas for characteristic classes on the Hilbert schemes of points on surfaces, J. Algebra 315 (2007), no. 2, 924–953; math.AG/0507470.
- Lev Borisov and Anatoly Libgober, McKay correspondence for elliptic genera, Ann. of Math. (2) 161 (2005), no. 3, 1521–1569. MR 2180406, DOI https://doi.org/10.4007/annals.2005.161.1521
- S.-J. Cheng and W. Wang, The correlation functions of vertex operators and Macdonald polynomials, math.CO/0512064.
- Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732, DOI https://doi.org/10.1007/BF01389419
- G. Ellisngsrud, L. Göttsche, M. Lehn, On the cobordism class of the Hilbert scheme of a surface, ArXiv:math/9904095.
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 237496, DOI https://doi.org/10.2307/2373541
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI https://doi.org/10.1023/A%3A1022476211638
- Lothar Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193–207. MR 1032930, DOI https://doi.org/10.1007/BF01453572
- Lothar Göttsche, Orbifold-Hodge numbers of Hilbert schemes, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 83–87. MR 1481482
- Lothar Göttsche and Wolfgang Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), no. 2, 235–245. MR 1219901, DOI https://doi.org/10.1007/BF01445104
- I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291. MR 1386846, DOI https://doi.org/10.4310/MRL.1996.v3.n2.a12
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI https://doi.org/10.1090/S0894-0347-01-00373-3
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI https://doi.org/10.1007/s002220200219
- Yukari Ito and Iku Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, 135–138. MR 1420598
- E. Kiritsis, Introduction to non-perturbative string theory, hep-th/9708130.
- A. Lascoux and J.-Y. Thibon, Vertex operators and the class algebras of symmetric groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6, 156–177, 261 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 121 (2004), no. 3, 2380–2392. MR 1879068, DOI https://doi.org/10.1023/B%3AJOTH.0000024619.77778.3d
- Manfred Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), no. 1, 157–207. MR 1681097, DOI https://doi.org/10.1007/s002220050307
- J. Li, K. Liu and J. Zhou, Topological string partition functions as equivariant indices, Asian J. Math. 10 (2006), no. 1, 81–114.
- Wei-ping Li, Zhenbo Qin, and Weiqiang Wang, Donaldson–Thomas invariants of certain Calebi–Yau $3$-folds, arXiv:1002.4080.
- Wei-ping Li, Zhenbo Qin, and Weiqiang Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002), no. 1, 105–133. MR 1931760, DOI https://doi.org/10.1007/s002080200330
- Wei-Ping Li, Zhenbo Qin, and Weiqiang Wang, The cohomology rings of Hilbert schemes via Jack polynomials, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 249–258. MR 2096149
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Hiraku Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388. MR 1441880, DOI https://doi.org/10.2307/2951818
- Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344
- H. Nakajima, Jack polynomials and Hilbert schemes of points on surfaces, alg-geom/9610021.
- H. Nakajima and K. Yoshioka, Instanton counting on blowup. I., Invent Math. 162 (2005), no. 2, 313–355. math.AG/0306198.
- Zhenbo Qin and Weiqiang Wang, Hilbert schemes of points on the minimal resolution and soliton equations, Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 435–462. MR 2372578, DOI https://doi.org/10.1090/conm/442/08541
- R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), no. 3, 447–462 (French). MR 1194949, DOI https://doi.org/10.1215/S0012-7094-92-06817-7
- J. Zhou, Delocalized equivariant cohomology of symmetric products, math.DG/ 9910028.
References
- George E. Andrews, The theory of partitions, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR 0557013 (58 \#27738)
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 0236952 (38 \#5245)
- S. Boissiere, M. A. Nieper-Wisskirchen, Universal formulas for characteristic classes on the Hilbert schemes of points on surfaces, J. Algebra 315 (2007), no. 2, 924–953; math.AG/0507470.
- L. Borisov, A. Libgober, McKay correspondence for elliptic genera, Ann. Math, Second Series, Vol. 161 (2005), no. 3, 1521-1569. MR 2180406 (2008b:58030)
- S.-J. Cheng and W. Wang, The correlation functions of vertex operators and Macdonald polynomials, math.CO/0512064.
- Geir Ellingsrud and Stein Arild Strømme, On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), no. 2, 343–352. MR 870732 (88c:14008), DOI https://doi.org/10.1007/BF01389419
- G. Ellisngsrud, L. Göttsche, M. Lehn, On the cobordism class of the Hilbert scheme of a surface, ArXiv:math/9904095.
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), 511–521. MR 0237496 (38 \#5778)
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305 (97k:05208), DOI https://doi.org/10.1023/A%3A1022476211638
- Lothar Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193–207. MR 1032930 (91h:14007), DOI https://doi.org/10.1007/BF01453572
- Lothar Göttsche, Orbifold-Hodge numbers of Hilbert schemes, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci., Warsaw, 1996, pp. 83–87. MR 1481482 (99c:14022)
- Lothar Göttsche and Wolfgang Soergel, Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces, Math. Ann. 296 (1993), no. 2, 235–245. MR 1219901 (94i:14026), DOI https://doi.org/10.1007/BF01445104
- I. Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), no. 2, 275–291. MR 1386846 (97f:14041)
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006 (electronic). MR 1839919 (2002c:14008), DOI https://doi.org/10.1090/S0894-0347-01-00373-3
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676 (2003f:14006), DOI https://doi.org/10.1007/s002220200219
- Yukari Ito and Iku Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, 135–138. MR 1420598 (97k:14003)
- E. Kiritsis, Introduction to non-perturbative string theory, hep-th/9708130.
- A. Lascoux and J.-Y. Thibon, Vertex operators and the class algebras of symmetric groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6), 156–177, 261 (English, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 121 (2004), no. 3, 2380–2392. MR 1879068 (2003b:20019), DOI https://doi.org/10.1023/B%3AJOTH.0000024619.77778.3d
- Manfred Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), no. 1, 157–207. MR 1681097 (2000h:14003), DOI https://doi.org/10.1007/s002220050307
- J. Li, K. Liu and J. Zhou, Topological string partition functions as equivariant indices, Asian J. Math. 10 (2006), no. 1, 81–114.
- Wei-ping Li, Zhenbo Qin, and Weiqiang Wang, Donaldson–Thomas invariants of certain Calebi–Yau $3$-folds, arXiv:1002.4080.
- Wei-ping Li, Zhenbo Qin, and Weiqiang Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002), no. 1, 105–133. MR 1931760 (2003h:14009), DOI https://doi.org/10.1007/s002080200330
- Wei-Ping Li, Zhenbo Qin, and Weiqiang Wang, The cohomology rings of Hilbert schemes via Jack polynomials, Algebraic structures and moduli spaces, CRM Proc. Lecture Notes, vol. 38, Amer. Math. Soc., Providence, RI, 2004, pp. 249–258. MR 2096149 (2005k:14009)
- I. G. Macdonald, Symmetric functions and Hall polynomials: 2nd ed., with contributions by A. Zelevinsky, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. MR 1354144 (96h:05207)
- Hiraku Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. (2) 145 (1997), no. 2, 379–388. MR 1441880 (98h:14006), DOI https://doi.org/10.2307/2951818
- Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344 (2001b:14007)
- H. Nakajima, Jack polynomials and Hilbert schemes of points on surfaces, alg-geom/9610021.
- H. Nakajima and K. Yoshioka, Instanton counting on blowup. I., Invent Math. 162 (2005), no. 2, 313–355. math.AG/0306198.
- Zhenbo Qin and Weiqiang Wang, Hilbert schemes of points on the minimal resolution and soliton equations, Lie algebras, vertex operator algebras and their applications, Contemp. Math., vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 435–462. MR 2372578 (2009b:14008), DOI https://doi.org/10.1090/conm/442/08541
- R. W. Thomason, Une formule de Lefschetz en $K$-théorie équivariante algébrique, Duke Math. J. 68 (1992), no. 3, 447–462 (French). MR 1194949 (93m:19007), DOI https://doi.org/10.1215/S0012-7094-92-06817-7
- J. Zhou, Delocalized equivariant cohomology of symmetric products, math.DG/ 9910028.
Additional Information
Zhilan Wang
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing, People’s Republic of China
Email:
wzl09@mails.tsinghua.edu.cn
Jian Zhou
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing, People’s Republic of China
Email:
jzhou@math.tsinghua.edu.cn
Received by editor(s):
April 27, 2011
Received by editor(s) in revised form:
October 12, 2011, and May 14, 2012
Published electronically:
April 10, 2014
Article copyright:
© Copyright 2014
University Press, Inc.