Motivic classes of commuting varieties via power structures
Authors:
Jim Bryan and Andrew Morrison
Journal:
J. Algebraic Geom. 24 (2015), 183-199
DOI:
https://doi.org/10.1090/S1056-3911-2014-00657-3
Published electronically:
October 20, 2014
MathSciNet review:
3275657
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We prove a formula, originally due to Feit and Fine, for the class of the commuting variety in the Grothendieck group of varieties. Our method, which uses a power structure on the Grothendieck group of stacks, allows us to prove several refinements and generalizations of the Feit-Fine formula. Our main application is to motivic Donaldson-Thomas theory.
References
- Kai Behrend, Jim Bryan, and Balázs Szendrői, Motivic degree zero Donaldson-Thomas invariants, Invent. Math. 192 (2013), no. 1, 111–160. MR 3032328, DOI https://doi.org/10.1007/s00222-012-0408-1
- Kai Behrend and Ajneet Dhillon, On the motivic class of the stack of bundles, Adv. Math. 212 (2007), no. 2, 617–644. MR 2329314, DOI https://doi.org/10.1016/j.aim.2006.11.003
- Torsten Ekedahl, A geometric invariant of a finite group. arXiv:math/0903.3148.
- Torsten Ekedahl, The Grothendieck group of algebraic stacks. arXiv:math/0903.3143.
- Walter Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. J. 27 (1960), 91–94. MR 109810
- Lothar Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5-6, 613–627. MR 1879805, DOI https://doi.org/10.4310/MRL.2001.v8.n5.a3
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, On the pre-$\lambda $-ring structure on the Grothendieck ring of stacks and the power structures over it, Bull. Lond. Math. Soc. 45 (2013), no. 3, 520–528. MR 3065021, DOI https://doi.org/10.1112/blms/bds122
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57. MR 2046199, DOI https://doi.org/10.4310/MRL.2004.v11.n1.a6
- S. M. Guseĭn-Zade, I. Luengo, and A. Mel′e-Èrnandez, Integration over a space of non-parametrized arcs, and motivic analogues of the monodromy zeta function, Tr. Mat. Inst. Steklova 252 (2006), no. Geom. Topol., Diskret. Geom. i Teor. Mnozh., 71–82 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 1(252) (2006), 63–73. MR 2255970, DOI https://doi.org/10.1134/s0081543806010081
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359. MR 2252764, DOI https://doi.org/10.1307/mmj/1156345599
- Andrew Morrison, Motivic invariants of quivers via dimensional reduction, Selecta Math. (N.S.) 18 (2012), no. 4, 779–797. MR 3000467, DOI https://doi.org/10.1007/s00029-011-0081-z
- Andrew Morrison and Kentaro Nagao, Motivic Donaldson-Thomas invariants of toric small crepant resolutions. arXiv:math/1110.5976.
- Sergey Mozgovoy, Motivic Donaldson-Thomas invariants and McKay correspondence. arXiv:math/1107.6044.
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
References
- Kai Behrend, Jim Bryan, and Balázs Szendrői, Motivic degree zero Donaldson-Thomas invariants, Invent. Math. 192 (2013), no. 1, 111–160. MR 3032328, DOI https://doi.org/10.1007/s00222-012-0408-1
- Kai Behrend and Ajneet Dhillon, On the motivic class of the stack of bundles, Adv. Math. 212 (2007), no. 2, 617–644. MR 2329314 (2008d:14016), DOI https://doi.org/10.1016/j.aim.2006.11.003
- Torsten Ekedahl, A geometric invariant of a finite group. arXiv:math/0903.3148.
- Torsten Ekedahl, The Grothendieck group of algebraic stacks. arXiv:math/0903.3143.
- Walter Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. J 27 (1960), 91–94. MR 0109810 (22 \#695)
- Lothar Göttsche, On the motive of the Hilbert scheme of points on a surface, Math. Res. Lett. 8 (2001), no. 5-6, 613–627. MR 1879805 (2002k:14008), DOI https://doi.org/10.4310/MRL.2001.v8.n5.a3
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, On the pre-$\lambda$-ring structure on the Grothendieck ring of stacks and the power structures over it, Bull. London Math. Soc. 45 (2013), no. 3, 520–528. MR 3065021
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004), no. 1, 49–57. MR 2046199 (2004m:14038), DOI https://doi.org/10.4310/MRL.2004.v11.n1.a6
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Integration over a space of non-parametrized arcs, and motivic analogues of the monodromy zeta function. Tr. Mat. Inst. Steklova 252 (2006), Geom. Topol., Diskret. Geom. i Teor. Mnozh., 71–82. MR 2255970 (2007k:14033)
- S. M. Gusein-Zade, I. Luengo, and A. Melle-Hernández, Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359. MR 2252764 (2007h:14005), DOI https://doi.org/10.1307/mmj/1156345599
- Andrew Morrison, Motivic invariants of quivers via dimensional reduction, Selecta Math. (N.S.) 18 (2012), no. 4, 779–797. MR 3000467, DOI https://doi.org/10.1007/s00029-011-0081-z
- Andrew Morrison and Kentaro Nagao, Motivic Donaldson-Thomas invariants of toric small crepant resolutions. arXiv:math/1110.5976.
- Sergey Mozgovoy, Motivic Donaldson-Thomas invariants and McKay correspondence. arXiv:math/1107.6044.
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
Additional Information
Jim Bryan
Affiliation:
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada
ORCID:
0000-0003-2541-5678
Email:
jbryan@math.ubc.ca
Andrew Morrison
Affiliation:
Departement Mathematik, HG G 68.2, Rämistrasse 101, 8092 Zürich, Switzerland
Email:
andrewmo@math.ethz.ch
Received by editor(s):
July 4, 2012
Received by editor(s) in revised form:
January 17, 2014
Published electronically:
October 20, 2014
Article copyright:
© Copyright 2014
University Press, Inc.