A structure theorem for $\mathcal {SU}_C(2)$ and the moduli of pointed rational curves
Authors:
Alberto Alzati and Michele Bolognesi
Journal:
J. Algebraic Geom. 24 (2015), 283-310
DOI:
https://doi.org/10.1090/S1056-3911-2014-00659-7
Published electronically:
June 11, 2014
MathSciNet review:
3311585
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $\mathcal {SU}_C(2)$ be the moduli space of rank 2 semistable vector bundles with trivial determinant on a smooth complex algebraic curve $C$ of genus $g>1$. We assume $C$ nonhyperellptic if $g>2$. In this paper we construct large families of pointed rational normal curves over certain linear sections of $\mathcal {SU}_C(2)$. This allows us to give an interpretation of these subvarieties of $\mathcal {SU}_C(2)$ in terms of the moduli space of curves $\mathcal {M}_{0,2g}$. In fact, there exists a natural linear map $\mathcal {SU}_C(2) \to \mathbb {P}^g$ with modular meaning, whose fibers are birational to $\mathcal {M}_{0,2g}$, the moduli space of $2g$-pointed genus zero curves. If $g<4$, these modular fibers are even isomorphic to the GIT compactification $\mathcal {M}_{0,2g}^{GIT}$. The families of pointed rational normal curves are recovered as the fibers of the maps that classify extensions of line bundles associated to some effective divisors.
References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
- D. Avritzer and H. Lange, The moduli spaces of hyperelliptic curves and binary forms, Math. Z. 242 (2002), no. 4, 615–632. MR 1981190, DOI https://doi.org/10.1007/s002090100370
- Arnaud Beauville, Fibrés de rang $2$ sur une courbe, fibré déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), no. 4, 431–448 (1989) (French, with English summary). MR 1005388
- Arnaud Beauville, The Coble hypersurfaces, C. R. Math. Acad. Sci. Paris 337 (2003), no. 3, 189–194 (English, with English and French summaries). MR 2001133, DOI https://doi.org/10.1016/S1631-073X%2803%2900302-9
- Aaron Bertram, Moduli of rank-$2$ vector bundles, theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35 (1992), no. 2, 429–469. MR 1158344
- Michele Bolognesi, A conic bundle degenerating on the Kummer surface, Math. Z. 261 (2009), no. 1, 149–168. MR 2452642, DOI https://doi.org/10.1007/s00209-008-0319-4
- Michele Bolognesi, Forgetful linear systems on the projective space and rational normal curves over $\scr M^{\rm GIT}_{0,2n}$, Bull. Lond. Math. Soc. 43 (2011), no. 3, 583–596. MR 2820147, DOI https://doi.org/10.1112/blms/bdq125
- Michele Bolognesi and Sonia Brivio, Coherent systems and modular subavrieties of $\scr {SU}_C(r)$, Internat. J. Math. 23 (2012), no. 4, 1250037, 23. MR 2903191, DOI https://doi.org/10.1142/S0129167X12500371
- Sonia Brivio and Alessandro Verra, The theta divisor of ${\rm SU}_C(2,2d)^s$ is very ample if $C$ is not hyperelliptic, Duke Math. J. 82 (1996), no. 3, 503–552. MR 1387683, DOI https://doi.org/10.1215/S0012-7094-96-08222-8
- Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, Vol. 10, American Mathematical Society, Providence, R.I., 1982. Reprint of the 1929 edition. MR 733252
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 262240
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, DOI https://doi.org/10.1007/BF01850655
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
- Brendan Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), no. 2, 316–352. MR 1957831, DOI https://doi.org/10.1016/S0001-8708%2802%2900058-0
- Benjamin Howard, John Millson, Andrew Snowden, and Ravi Vakil, The equations for the moduli space of $n$ points on the line, Duke Math. J. 146 (2009), no. 2, 175–226. MR 2477759, DOI https://doi.org/10.1215/00127094-2008-063
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547
- B. van Geemen and E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), no. 1, 133–177. MR 1795553
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
- Sean Keel and James McKernan, Contractible extremal rays on $\overline {\mathcal {M}}_{0,n}$, (1996), 1–24, preprint, http://arxiv.org/abs/alg-geom/9607009.
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953, DOI https://doi.org/10.7146/math.scand.a-12001
- Alexis Kouvidakis, On the moduli space of vector bundles on the fibers of the universal curve, J. Differential Geom. 37 (1993), no. 3, 505–522. MR 1217158
- H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), no. 1, 55–72. MR 722927, DOI https://doi.org/10.1007/BF01458704
- Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499–525 (English, with English and French summaries). MR 1456243, DOI https://doi.org/10.1016/S0012-9593%2897%2989929-6
- D. Mumford and P. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1200–1208. MR 234958, DOI https://doi.org/10.2307/2373296
- M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 (1969), 14–51. MR 242185, DOI https://doi.org/10.2307/1970807
- M. S. Narasimhan and S. Ramanan, Vector bundles on curves, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 335–346. MR 0266931
- Quang Minh Nguyễn, Vector bundles, dualities and classical geometry on a curve of genus two, Internat. J. Math. 18 (2007), no. 5, 535–558. MR 2331078, DOI https://doi.org/10.1142/S0129167X07004230
- Angela Ortega, On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic, J. Algebraic Geom. 14 (2005), no. 2, 327–356. MR 2123233, DOI https://doi.org/10.1090/S1056-3911-04-00387-X
- W. M. Oxbury, C. Pauly, and E. Previato, Subvarieties of $\scr {SU}_C(2)$ and $2\theta $-divisors in the Jacobian, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3587–3614. MR 1467474, DOI https://doi.org/10.1090/S0002-9947-98-02148-5
- William Oxbury and Christian Pauly, Heisenberg invariant quartics and $\scr S\scr U_C(2)$ for a curve of genus four, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 2, 295–319. MR 1643798, DOI https://doi.org/10.1017/S0305004198003028
- Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc. 16 (2003), no. 2, 285–302. MR 1949161, DOI https://doi.org/10.1090/S0894-0347-02-00414-9
- Christian Pauly, Self-duality of Coble’s quartic hypersurface and applications, Michigan Math. J. 50 (2002), no. 3, 551–574. MR 1935152, DOI https://doi.org/10.1307/mmj/1039029982
- Christoph Sorger, La formule de Verlinde, Astérisque 237 (1996), Exp. No. 794, 3, 87–114 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR 1423621
- Pol Vanhaecke, Integrable systems and moduli spaces of rank 2 vector bundles on a non-hyperelliptic genus 3 curve, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 1789–1802 (English, with English and French summaries). MR 2187935
- A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294–1297 (Russian). MR 712934
- André Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938), no. 9, 47–87.
References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
- D. Avritzer and H. Lange, The moduli spaces of hyperelliptic curves and binary forms, Math. Z. 242 (2002), no. 4, 615–632. MR 1981190 (2004c:14051), DOI https://doi.org/10.1007/s002090100370
- Arnaud Beauville, Fibrés de rang $2$ sur une courbe, fibré déterminant et fonctions thêta, Bull. Soc. Math. France 116 (1988), no. 4, 431–448 (1989) (French, with English summary). MR 1005388 (91b:14038)
- Arnaud Beauville, The Coble hypersurfaces, C. R. Math. Acad. Sci. Paris 337 (2003), no. 3, 189–194 (English, with English and French summaries). MR 2001133 (2004k:14056), DOI https://doi.org/10.1016/S1631-073X%2803%2900302-9
- Aaron Bertram, Moduli of rank-$2$ vector bundles, theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35 (1992), no. 2, 429–469. MR 1158344 (93g:14037)
- Michele Bolognesi, A conic bundle degenerating on the Kummer surface, Math. Z. 261 (2009), no. 1, 149–168. MR 2452642 (2009h:14021), DOI https://doi.org/10.1007/s00209-008-0319-4
- Michele Bolognesi, Forgetful linear systems on the projective space and rational normal curves over $\mathcal {M}^\textrm {GIT}_{0,2n}$, Bull. Lond. Math. Soc. 43 (2011), no. 3, 583–596. MR 2820147 (2012m:14049), DOI https://doi.org/10.1112/blms/bdq125
- Michele Bolognesi and Sonia Brivio, Coherent systems and modular subavrieties of $\mathcal {SU}_C(r)$, Internat. J. Math. 23 (2012), no. 4, 1250037, 23. MR 2903191, DOI https://doi.org/10.1142/S0129167X12500371
- Sonia Brivio and Alessandro Verra, The theta divisor of $\textrm {SU}_C(2,2d)^s$ is very ample if $C$ is not hyperelliptic, Duke Math. J. 82 (1996), no. 3, 503–552. MR 1387683 (97e:14017), DOI https://doi.org/10.1215/S0012-7094-96-08222-8
- Arthur B. Coble, Algebraic geometry and theta functions, American Mathematical Society Colloquium Publications, vol. 10, American Mathematical Society, Providence, R.I., 1982. Reprint of the 1929 edition. MR 733252 (84m:14001)
- P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR 0262240 (41 \#6850)
- Igor Dolgachev and David Ortland, Point sets in projective spaces and theta functions, Astérisque 165 (1988), 210 pp. (1989) (English, with French summary). MR 1007155 (90i:14009)
- J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313 (90d:14008), DOI https://doi.org/10.1007/BF01850655
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564 (97e:14001)
- Brendan Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003), no. 2, 316–352. MR 1957831 (2004b:14040), DOI https://doi.org/10.1016/S0001-8708%2802%2900058-0
- Benjamin Howard, John Millson, Andrew Snowden, and Ravi Vakil, The equations for the moduli space of $n$ points on the line, Duke Math. J. 146 (2009), no. 2, 175–226. MR 2477759 (2009m:14070), DOI https://doi.org/10.1215/00127094-2008-063
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547 (98c:14033)
- B. van Geemen and E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), no. 1, 133–177. MR 1795553 (2002e:14058)
- M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space $\overline M_{0,n}$, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685 (94a:14024)
- Sean Keel and James McKernan, Contractible extremal rays on $\overline {\mathcal {M}}_{0,n}$, (1996), 1–24, preprint, http://arxiv.org/abs/alg-geom/9607009.
- Finn F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), no. 2, 161–199. MR 702953 (85d:14038a)
- Alexis Kouvidakis, On the moduli space of vector bundles on the fibers of the universal curve, J. Differential Geom. 37 (1993), no. 3, 505–522. MR 1217158 (94h:14010)
- H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983), no. 1, 55–72. MR 722927 (85f:14013), DOI https://doi.org/10.1007/BF01458704
- Yves Laszlo and Christoph Sorger, The line bundles on the moduli of parabolic $G$-bundles over curves and their sections, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 4, 499–525 (English, with English and French summaries). MR 1456243 (98f:14007), DOI https://doi.org/10.1016/S0012-9593%2897%2989929-6
- D. Mumford and P. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968), 1200–1208. MR 0234958 (38 \#3272)
- M. S. Narasimhan and S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 (1969), 14–51. MR 0242185 (39 \#3518)
- M. S. Narasimhan and S. Ramanan, Vector bundles on curves, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 335–346. MR 0266931 (42 \#1833)
- Quang Minh Nguyễn, Vector bundles, dualities and classical geometry on a curve of genus two, Internat. J. Math. 18 (2007), no. 5, 535–558. MR 2331078 (2008e:14051), DOI https://doi.org/10.1142/S0129167X07004230
- Angela Ortega, On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic, J. Algebraic Geom. 14 (2005), no. 2, 327–356. MR 2123233 (2006a:14057), DOI https://doi.org/10.1090/S1056-3911-04-00387-X
- W. M. Oxbury, C. Pauly, and E. Previato, Subvarieties of $\mathcal {SU}_C(2)$ and $2\theta$-divisors in the Jacobian, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3587–3614. MR 1467474 (98m:14034), DOI https://doi.org/10.1090/S0002-9947-98-02148-5
- William Oxbury and Christian Pauly, Heisenberg invariant quartics and $\mathcal {S}\mathcal {U}_C(2)$ for a curve of genus four, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 2, 295–319. MR 1643798 (99k:14022), DOI https://doi.org/10.1017/S0305004198003028
- Giuseppe Pareschi and Mihnea Popa, Regularity on abelian varieties. I, J. Amer. Math. Soc. 16 (2003), no. 2, 285–302 (electronic). MR 1949161 (2004c:14086), DOI https://doi.org/10.1090/S0894-0347-02-00414-9
- Christian Pauly, Self-duality of Coble’s quartic hypersurface and applications, Michigan Math. J. 50 (2002), no. 3, 551–574. MR 1935152 (2003m:14053), DOI https://doi.org/10.1307/mmj/1039029982
- Christoph Sorger, La formule de Verlinde, Astérisque 237 (1996), Exp. No. 794, 3, 87–114 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95. MR 1423621 (98f:14009)
- Pol Vanhaecke, Integrable systems and moduli spaces of rank 2 vector bundles on a non-hyperelliptic genus 3 curve, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 1789–1802 (English, with English and French summaries). MR 2187935 (2007f:14033)
- A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294–1297 (Russian). MR 712934 (85d:32028)
- André Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938), no. 9, 47–87.
Additional Information
Alberto Alzati
Affiliation:
Dipartimento di Matematica “F. Enriques”, Via Saldini 50, 20133 Milano, Italy
Email:
alberto.alzati@unimi.it
Michele Bolognesi
Affiliation:
IRMAR, Université de Rennes 1, 263 Av. du Général Leclerc, 35042 Rennes Cedex, France
Email:
michele.bolognesi@univ-rennes1.fr
Received by editor(s):
October 17, 2011
Received by editor(s) in revised form:
March 21, 2013, and October 21, 2013
Published electronically:
June 11, 2014
Article copyright:
© Copyright 2014
University Press, Inc.