Beilinson-Flach elements and Euler systems I: Syntomic regulators and $p$-adic Rankin $L$-series
Authors:
Massimo Bertolini, Henri Darmon and Victor Rotger
Journal:
J. Algebraic Geom. 24 (2015), 355-378
DOI:
https://doi.org/10.1090/S1056-3911-2014-00670-6
Published electronically:
December 18, 2014
MathSciNet review:
3311587
Full-text PDF
Abstract |
References |
Additional Information
Abstract: This article is the first in a series devoted to the Euler system arising from $p$-adic families of Beilinson-Flach elements in the first $K$-group of the product of two modular curves. It relates the image of these elements under the $p$-adic syntomic regulator (as described by Besser (2012)) to the special values at the near-central point of Hida’s $p$-adic Rankin $L$-function attached to two Hida families of cusp forms.
References
- Srinath Baba and Ramesh Sreekantan, An analogue of circular units for products of elliptic curves, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 1, 35–51. MR 2064735, DOI https://doi.org/10.1017/S001309150200113X
- Massimo Bertolini and Henri Darmon, Kato’s Euler system and rational points on elliptic curves I: A $p$-adic Beilinson formula, Israel J. Math. 199 (2014), no. 1, 163–188. MR 3219532, DOI https://doi.org/10.1007/s11856-013-0047-2
- Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Math. J. 162 (2013), no. 6, 1033–1148. With an appendix by Brian Conrad. MR 3053566, DOI https://doi.org/10.1215/00127094-2142056
- M. Bertolini, H. Darmon, and V. Rotger, Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series, submitted.
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999
- Amnon Besser, A generalization of Coleman’s $p$-adic integration theory, Invent. Math. 142 (2000), no. 2, 397–434. MR 1794067, DOI https://doi.org/10.1007/s002220000093
- Amnon Besser, Syntomic regulators and $p$-adic integration. I. Rigid syntomic regulators. part B, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. 291–334. MR 1809626, DOI https://doi.org/10.1007/BF02834843
- Amnon Besser, On the syntomic regulator for $K_1$ of a surface, Israel J. Math. 190 (2012), 29–66. MR 2956231, DOI https://doi.org/10.1007/s11856-011-0188-0
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- François Brunault, Valeur en 2 de fonctions $L$ de formes modulaires de poids 2: théorème de Beilinson explicite, Bull. Soc. Math. France 135 (2007), no. 2, 215–246 (French, with English and French summaries). MR 2430191, DOI https://doi.org/10.24033/bsmf.2532
- Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51. MR 1279600, DOI https://doi.org/10.1090/conm/165/01602
- Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: A $p$-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064, DOI https://doi.org/10.24033/asens.2227
- S. Dasgupta, Greenberg’s conjecture on symmetric square $p$-adic $L$-functions, preprint, 2014.
- F. Déglise and N. Mazzari, The rigid syntomic spectrum, preprint, 2012.
- Christopher Deninger and Anthony J. Scholl, The Beĭlinson conjectures, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 173–209. MR 1110393, DOI https://doi.org/10.1017/CBO9780511526053.007
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693, DOI https://doi.org/10.1007/BF01232029
- Michel Gros, Régulateurs syntomiques et valeurs de fonctions $L\;p$-adiques. II, Invent. Math. 115 (1994), no. 1, 61–79 (French). MR 1248079, DOI https://doi.org/10.1007/BF01231754
- Benedict H. Gross, On the factorization of $p$-adic $L$-series, Invent. Math. 57 (1980), no. 1, 83–95. MR 564185, DOI https://doi.org/10.1007/BF01389819
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653–771. MR 3224721, DOI https://doi.org/10.4007/annals.2014.180.2.6
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and $p$-adic $L$-functions over $\Bbb {Z}_p^2$-extensions, Int. J. Number Theory 10 (2014), no. 8, 2045–2095. MR 3273476, DOI https://doi.org/10.1142/S1793042114500699
- Wieslawa Niziol, On the image of $p$-adic regulators, Invent. Math. 127 (1997), no. 2, 375–400. MR 1427624, DOI https://doi.org/10.1007/s002220050125
- Ambrus Pál, A rigid analytical regulator for the $K_2$ of Mumford curves, Publ. Res. Inst. Math. Sci. 46 (2010), no. 2, 219–253. MR 2722778, DOI https://doi.org/10.2977/PRIMS/8
- Anthony J. Scholl, Integral elements in $K$-theory and products of modular curves, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 467–489. MR 1744957
- Goro Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783–804. MR 434962, DOI https://doi.org/10.1002/cpa.3160290618
- Goro Shimura, On a class of nearly holomorphic automorphic forms, Ann. of Math. (2) 123 (1986), no. 2, 347–406. MR 835767, DOI https://doi.org/10.2307/1971276
- Ramesh Sreekantan, Non-Archimedean regulator maps and special values of $L$-functions, Cycles, motives and Shimura varieties, Tata Inst. Fund. Res. Stud. Math., vol. 21, Tata Inst. Fund. Res., Mumbai, 2010, pp. 469–492. MR 2906033
- Ramesh Sreekantan, $K_1$ of products of Drinfeld modular curves and special values of $L$-functions, Compos. Math. 146 (2010), no. 4, 886–918. MR 2660677, DOI https://doi.org/10.1112/S0010437X10004720
References
- Srinath Baba and Ramesh Sreekantan, An analogue of circular units for products of elliptic curves, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 1, 35–51. MR 2064735 (2005c:11073), DOI https://doi.org/10.1017/S001309150200113X
- Massimo Bertolini and Henri Darmon, Kato’s Euler system and rational points on elliptic curves I: a $p$-adic Beilinson formula, Israel J. Math. 199 (2014), no. 1, 163–188. MR 3219532, DOI https://doi.org/10.1007/s11856-013-0047-2
- Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and $p$-adic Rankin $L$-series, with an appendix by Brian Conrad, Duke Math. J. 162 (2013), no. 6, 1033–1148. MR 3053566, DOI https://doi.org/10.1215/00127094-2142056
- M. Bertolini, H. Darmon, and V. Rotger, Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series, submitted.
- A. A. Beĭlinson, Higher regulators and values of $L$-functions, Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238 (Russian). MR 760999 (86h:11103)
- Amnon Besser, A generalization of Coleman’s $p$-adic integration theory, Invent. Math. 142 (2000), no. 2, 397–434. MR 1794067 (2001i:14032), DOI https://doi.org/10.1007/s002220000093
- Amnon Besser, Syntomic regulators and $p$-adic integration. I. Rigid syntomic regulators, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. part B, 291–334. MR 1809626 (2002c:14035), DOI https://doi.org/10.1007/BF02834843
- Amnon Besser, On the syntomic regulator for $K_1$ of a surface, Israel J. Math. 190 (2012), 29–66. MR 2956231, DOI https://doi.org/10.1007/s11856-011-0188-0
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815 (88f:18010), DOI https://doi.org/10.1016/0001-8708%2886%2990081-2
- François Brunault, Valeur en 2 de fonctions $L$ de formes modulaires de poids 2: théorème de Beilinson explicite, Bull. Soc. Math. France 135 (2007), no. 2, 215–246 (French, with English and French summaries). MR 2430191 (2009e:11096)
- Robert F. Coleman, A $p$-adic Shimura isomorphism and $p$-adic periods of modular forms, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 21–51. MR 1279600 (96a:11050), DOI https://doi.org/10.1090/conm/165/01602
- Henri Darmon and Victor Rotger, Diagonal cycles and Euler systems I: a $p$-adic Gross-Zagier formula, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 779–832 (English, with English and French summaries). MR 3250064
- S. Dasgupta, Greenberg’s conjecture on symmetric square $p$-adic $L$-functions, preprint, 2014.
- F. Déglise and N. Mazzari, The rigid syntomic spectrum, preprint, 2012.
- Christopher Deninger and Anthony J. Scholl, The Beĭlinson conjectures, $L$-functions and arithmetic (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, pp. 173–209. MR 1110393 (92h:11056), DOI https://doi.org/10.1017/CBO9780511526053.007
- Matthias Flach, A finiteness theorem for the symmetric square of an elliptic curve, Invent. Math. 109 (1992), no. 2, 307–327. MR 1172693 (93g:11066), DOI https://doi.org/10.1007/BF01232029
- Michel Gros, Régulateurs syntomiques et valeurs de fonctions $L\;p$-adiques. II, Invent. Math. 115 (1994), no. 1, 61–79 (French). MR 1248079 (95f:11044), DOI https://doi.org/10.1007/BF01231754
- Benedict H. Gross, On the factorization of $p$-adic $L$-series, Invent. Math. 57 (1980), no. 1, 83–95. MR 564185 (82a:12010), DOI https://doi.org/10.1007/BF01389819
- Haruzo Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, vol. 26, Cambridge University Press, Cambridge, 1993. MR 1216135 (94j:11044)
- Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. (2) 180 (2014), no. 2, 653–771. MR 3224721, DOI https://doi.org/10.4007/annals.2014.180.2.6
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and $p$-adic $L$-functions over $\mathbb {Z}_p^2$-extensions, Int. J. Number Theory 10 (2014), no. 8, 2045–2095. MR 3273476, DOI https://doi.org/10.1142/S1793042114500699
- Wieslawa Niziol, On the image of $p$-adic regulators, Invent. Math. 127 (1997), no. 2, 375–400. MR 1427624 (98a:14031), DOI https://doi.org/10.1007/s002220050125
- Ambrus Pál, A rigid analytical regulator for the $K_2$ of Mumford curves, Publ. Res. Inst. Math. Sci. 46 (2010), no. 2, 219–253. MR 2722778 (2011m:19002), DOI https://doi.org/10.2977/PRIMS/8
- Anthony J. Scholl, Integral elements in $K$-theory and products of modular curves, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998) NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, pp. 467–489. MR 1744957 (2001i:11077)
- Goro Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math. 29 (1976), no. 6, 783–804. MR 0434962 (55 \#7925)
- Goro Shimura, On a class of nearly holomorphic automorphic forms, Ann. of Math. (2) 123 (1986), no. 2, 347–406. MR 835767 (88b:11025a), DOI https://doi.org/10.2307/1971276
- Ramesh Sreekantan, Non-Archimedean regulator maps and special values of $L$-functions, Cycles, motives and Shimura varieties, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2010, pp. 469–492. MR 2906033
- Ramesh Sreekantan, $K_1$ of products of Drinfeld modular curves and special values of $L$-functions, Compos. Math. 146 (2010), no. 4, 886–918. MR 2660677 (2011g:11095), DOI https://doi.org/10.1112/S0010437X10004720
Additional Information
Massimo Bertolini
Affiliation:
Universität Duisburg-Essen, Fakultät für Mathematik, Mathematikcarrée, Thea-Leymann-Strasse 9, 45326 Essen, Germany
MR Author ID:
249679
Email:
massimo.bertolini@uni-due.de
Henri Darmon
Affiliation:
McGill University, Burnside Hall, Room 1111, Montréal, Quebec H3A 0G4, Canada
MR Author ID:
271251
Email:
darmon@math.mcgill.ca
Victor Rotger
Affiliation:
Universitat Politècnica de Catalunya, MA II, Despatx 413, C. Jordi Girona 1-3, 08034 Barcelona, Spain
MR Author ID:
698263
Email:
victor.rotger@upc.edu
Received by editor(s):
June 21, 2012
Received by editor(s) in revised form:
August 20, 2014, October 24, 2014, and October 29, 2014
Published electronically:
December 18, 2014
Additional Notes:
During the preparation of this work, the first author was financially supported by MIUR-Prin, the second author by an NSERC Discovery grant, and the third author by MTM20121-34611
Article copyright:
© Copyright 2014
University Press, Inc.