An Equivariant Main Conjecture in Iwasawa theory and applications
Authors:
Cornelius Greither and Cristian D. Popescu
Journal:
J. Algebraic Geom. 24 (2015), 629-692
DOI:
https://doi.org/10.1090/jag/635
Published electronically:
July 6, 2015
MathSciNet review:
3383600
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We construct a new class of Iwasawa modules, which are the number field analogues of the $p$-adic realizations of the Picard $1$-motives constructed by Deligne and studied extensively from a Galois module structure point of view in our previous works. We prove that the new Iwasawa modules are of projective dimension $1$ over the appropriate profinite group rings. In the abelian case, we prove an Equivariant Main Conjecture, identifying the first Fitting ideal of the Iwasawa module in question over the appropriate profinite group ring with the principal ideal generated by a certain equivariant $p$-adic $L$-function. This is an integral, equivariant refinement of the classical Main Conjecture over totally real number fields proved by Wiles. Finally, we use these results and Iwasawa co-descent to prove refinements of the (imprimitive) Brumer–Stark Conjecture and the Coates–Sinnott Conjecture, away from their $2$-primary components, in the most general number field setting. All of the above is achieved under the assumption that the relevant prime $p$ is odd and that the appropriate classical Iwasawa $\mu$-invariants vanish (as conjectured by Iwasawa).
References
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 387496
- David Burns and Cornelius Greither, Equivariant Weierstrass preparation and values of $L$-functions at negative integers, Doc. Math. Extra Vol. (2003), 157–185. Kazuya Kato’s fiftieth birthday. MR 2046598
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta $p$-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276, DOI https://doi.org/10.1007/BF01389911
- John Coates, $p$-adic $L$-functions and Iwasawa’s theory, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 269–353. MR 0460282
- J. Coates and W. Sinnott, An analogue of Stickelberger’s theorem for the higher $K$-groups, Invent. Math. 24 (1974), 149–161. MR 369322, DOI https://doi.org/10.1007/BF01404303
- John Coates, Peter Schneider, R. Sujatha, and Otmar Venjakob (eds.), Noncommutative Iwasawa main conjectures over totally real fields, Springer Proceedings in Mathematics & Statistics, vol. 29, Springer, Heidelberg, 2013. Papers from the Workshop held at the University of Münster, Münster, April 25–30, 2011. MR 3075006
- Pietro Cornacchia and Cornelius Greither, Fitting ideals of class groups of real fields with prime power conductor, J. Number Theory 73 (1998), no. 2, 459–471. MR 1658000, DOI https://doi.org/10.1006/jnth.1998.2300
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, DOI https://doi.org/10.1007/BF01453237
- William G. Dwyer and Eric M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962, DOI https://doi.org/10.1090/S0002-9947-1985-0805962-2
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI https://doi.org/10.2307/1971116
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344, DOI https://doi.org/10.1017/S0027763000020250
- Cornelius Greither, Arithmetic annihilators and Stark-type conjectures, Stark’s conjectures: recent work and new directions, Contemp. Math., vol. 358, Amer. Math. Soc., Providence, RI, 2004, pp. 55–78. MR 2088712, DOI https://doi.org/10.1090/conm/358/06536
- Cornelius Greither, Computing Fitting ideals of Iwasawa modules, Math. Z. 246 (2004), no. 4, 733–767. MR 2045837, DOI https://doi.org/10.1007/s00209-003-0610-3
- Cornelius Greither and Cristian D. Popescu, The Galois module structure of $\ell $-adic realizations of Picard 1-motives and applications, Int. Math. Res. Not. IMRN 5 (2012), 986–1036. MR 2899958, DOI https://doi.org/10.1093/imrn/rnr049
- Cornelius Greither and Cristian D. Popescu, Fitting ideals of $\ell $-adic realizations of Picard 1-motives and class groups of global function fields, J. Reine Angew. Math. 675 (2013), 223–247. MR 3021452, DOI https://doi.org/10.1515/crelle.2012.003
- Kenkichi Iwasawa, On ${\bf Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI https://doi.org/10.2307/1970784
- Kenkichi Iwasawa, Riemann-Hurwitz formula and $p$-adic Galois representations for number fields, Tohoku Math. J. (2) 33 (1981), no. 2, 263–288. MR 624610, DOI https://doi.org/10.2748/tmj/1178229453
- Yûji Kida, $l$-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), no. 4, 519–528. MR 599821, DOI https://doi.org/10.1016/0022-314X%2880%2990042-6
- Manfred Kolster, $K$-theory and arithmetic, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 191–258. MR 2175640
- B. Mazur and A. Wiles, Class fields of abelian extensions of ${\bf Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853, DOI https://doi.org/10.1007/BF01388599
- John Milnor, Introduction to algebraic $K$-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR 0349811
- Sh\B{o}ichi Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z. 190 (1985), no. 4, 559–566. MR 808922, DOI https://doi.org/10.1007/BF01214754
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Thong Nguyen Quang Do, Conjecture Principale Équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa, J. Théor. Nombres Bordeaux 17 (2005), no. 2, 643–668 (French, with English and French summaries). MR 2211312
- Andreas Nickel, Equivariant Iwasawa theory and non-abelian Stark-type conjectures, Proc. Lond. Math. Soc. (3) 106 (2013), no. 6, 1223–1247. MR 3072281, DOI https://doi.org/10.1112/plms/pds086
- Cristian D. Popescu, On the Coates-Sinnott conjecture, Math. Nachr. 282 (2009), no. 10, 1370–1390. MR 2571700, DOI https://doi.org/10.1002/mana.200810802
- Cristian D. Popescu, Integral and $p$-adic refinements of the abelian Stark conjecture, Arithmetic of $L$-functions, IAS/Park City Math. Ser., vol. 18, Amer. Math. Soc., Providence, RI, 2011, pp. 45–101. MR 2882687, DOI https://doi.org/10.1090/pcms/018/04
- Daniel Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 179–198. Lecture Notes in Math., Vol. 341. MR 0349812
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory, Manuscripta Math. 109 (2002), no. 2, 131–146. MR 1935024, DOI https://doi.org/10.1007/s00229-002-0306-8
- Jürgen Ritter and Alfred Weiss, On the “main conjecture” of equivariant Iwasawa theory, J. Amer. Math. Soc. 24 (2011), no. 4, 1015–1050. MR 2813337, DOI https://doi.org/10.1090/S0894-0347-2011-00704-2
- Karl Rubin, A Stark conjecture “over $\mathbf Z$” for abelian $L$-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33–62 (English, with English and French summaries). MR 1385509
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Carl Ludwig Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56 (German). MR 285488
- Warren M. Sinnott, On $p$-adic $L$-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), no. 1, 3–17. MR 762305
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999, DOI https://doi.org/10.1007/BF01406843
- Christophe Soulé, On higher $p$-adic regulators, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980) Lecture Notes in Math., vol. 854, Springer, Berlin-New York, 1981, pp. 372–401. MR 618313, DOI https://doi.org/10.1007/BFb0089530
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI https://doi.org/10.2307/1971468
References
- Armand Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. (4) 7 (1974), 235–272 (1975). MR 0387496 (52 \#8338)
- David Burns and Cornelius Greither, Equivariant Weierstrass preparation and values of $L$-functions at negative integers, Doc. Math. Extra Vol. (2003), 157–185 (electronic). Kazuya Kato’s fiftieth birthday. MR 2046598 (2005e:11148)
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta $p$-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276 (80h:12009b), DOI https://doi.org/10.1007/BF01389911
- John Coates, $p$-adic $L$-functions and Iwasawa’s theory, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 269–353. MR 0460282 (57 \#276)
- J. Coates and W. Sinnott, An analogue of Stickelberger’s theorem for the higher $K$-groups, Invent. Math. 24 (1974), 149–161. MR 0369322 (51 \#5557)
- J. Coates, R. Sujatha, P. Schneider, and O. Venjakob (eds.), Noncommutative main conjectures over totally real fields, Springer Proceedings in Mathematics $\&$ Statistics, vol. 29, Springer-Verlag, 2013. MR 3075006
- Pietro Cornacchia and Cornelius Greither, Fitting ideals of class groups of real fields with prime power conductor, J. Number Theory 73 (1998), no. 2, 459–471. MR 1658000 (99j:11137), DOI https://doi.org/10.1006/jnth.1998.2300
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 0498552 (58 \#16653b)
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702 (81m:12019), DOI https://doi.org/10.1007/BF01453237
- William G. Dwyer and Eric M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962 (87h:18013), DOI https://doi.org/10.2307/2000179
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968 (81a:12005), DOI https://doi.org/10.2307/1971116
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344 (85b:11104)
- Cornelius Greither, Arithmetic annihilators and Stark-type conjectures, Stark’s conjectures: recent work and new directions, Contemp. Math., vol. 358, Amer. Math. Soc., Providence, RI, 2004, pp. 55–78. MR 2088712 (2005h:11259), DOI https://doi.org/10.1090/conm/358/06536
- Cornelius Greither, Computing Fitting ideals of Iwasawa modules, Math. Z. 246 (2004), no. 4, 733–767. MR 2045837 (2004k:11170), DOI https://doi.org/10.1007/s00209-003-0610-3
- Cornelius Greither and Cristian D. Popescu, The Galois module structure of $\ell$-adic realizations of Picard 1-motives and applications, Int. Math. Res. Not. IMRN 5 (2012), 986–1036. MR 2899958
- Cornelius Greither and Cristian D. Popescu, Fitting ideals of $\ell$–adic realizations of Picard $1$–motives and class groups of global function fields, J. Reine Angew. Math. 675 (2013), 223–247. MR 3021452
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 0349627 (50 \#2120)
- Kenkichi Iwasawa, Riemann-Hurwitz formula and $p$-adic Galois representations for number fields, Tôhoku Math. J. (2) 33 (1981), no. 2, 263–288. MR 624610 (83b:12003), DOI https://doi.org/10.2748/tmj/1178229453
- Yûji Kida, $l$-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), no. 4, 519–528. MR 599821 (82c:12006), DOI https://doi.org/10.1016/0022-314X%2880%2990042-6
- Manfred Kolster, $K$-theory and arithmetic, Contemporary developments in algebraic $K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 191–258 (electronic). MR 2175640 (2006m:11168)
- B. Mazur and A. Wiles, Class fields of abelian extensions of $\textbf {Q}$, Invent. Math. 76 (1984), no. 2, 179–330. MR 742853 (85m:11069), DOI https://doi.org/10.1007/BF01388599
- John Milnor, Introduction to algebraic $K$-theory, Princeton University Press, Princeton, N.J., 1971. Annals of Mathematics Studies, No. 72. MR 0349811 (50 \#2304)
- Shōichi Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z. 190 (1985), no. 4, 559–566. MR 808922 (87g:14024), DOI https://doi.org/10.1007/BF01214754
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196 (2000j:11168)
- Thong Nguyen Quang Do, Conjecture Principale Équivariante, idéaux de Fitting et annulateurs en théorie d’Iwasawa, J. Théor. Nombres Bordeaux 17 (2005), no. 2, 643–668 (French, with English and French summaries). MR 2211312 (2006k:11210)
- Andreas Nickel, Equivariant Iwasawa theory and non-abelian Stark-type conjectures, Proc. Lond. Math. Soc. (3) 106 (2013), no. 6, 1223–1247. MR 3072281, DOI https://doi.org/10.1112/plms/pds086
- Cristian D. Popescu, On the Coates-Sinnott conjecture, Math. Nachr. 282 (2009), no. 10, 1370–1390. MR 2571700 (2011c:19010), DOI https://doi.org/10.1002/mana.200810802
- Cristian D. Popescu, Integral and $p$-adic refinements of the abelian Stark conjecture, The Arithmetic of $L$-functions, C. D. Popescu, K. Rubin, and A. Silverberg, editors, IAS-Park City Math. Series, Vol. 18, American Math. Society, Providence, RI, 2011. MR 2882687 (2012k:11135)
- Daniel Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 179–198. Lecture Notes in Math., Vol. 341. MR 0349812 (50 \#2305)
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory, Manuscripta Math. 109 (2002), no. 2, 131–146. MR 1935024 (2003i:11161), DOI https://doi.org/10.1007/s00229-002-0306-8
- Jürgen Ritter and Alfred Weiss, On the “main conjecture” of equivariant Iwasawa theory, J. Amer. Math. Soc. 24 (2011), no. 4, 1015–1050. MR 2813337 (2012f:11219), DOI https://doi.org/10.1090/S0894-0347-2011-00704-2
- Karl Rubin, A Stark conjecture “over $\mathbf {Z}$” for abelian $L$-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33–62 (English, with English and French summaries). MR 1385509 (97d:11174)
- J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York, 1979, Translated from the French by Marvin Jay Greenberg. MR 554237 (82e:12016)
- Carl Ludwig Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56 (German). MR 0285488 (44 \#2706)
- Warren M. Sinnott, On $p$-adic $L$-functions and the Riemann-Hurwitz genus formula, Compositio Math. 53 (1984), no. 1, 3–17. MR 762305 (86e:11103)
- C. Soulé, $K$-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math. 55 (1979), no. 3, 251–295 (French). MR 553999 (81i:12016), DOI https://doi.org/10.1007/BF01406843
- Christophe Soulé, On higher $p$-adic regulators, Algebraic $K$-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math., vol. 854, Springer, Berlin, 1981, pp. 372–401. MR 618313 (83b:12013)
- J. Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston Inc., Boston, MA, 1984, Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485 (86e:11112)
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575 (97h:11130)
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488 (91i:11163), DOI https://doi.org/10.2307/1971468
Additional Information
Cornelius Greither
Affiliation:
Institut für Theoretische Informatik und Mathematik, Universität der Bundeswehr, München, 85577 Neubiberg, Germany
Email:
cornelius.greither@unibw.de
Cristian D. Popescu
Affiliation:
Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112
MR Author ID:
648723
Email:
cpopescu@math.ucsd.edu
Received by editor(s):
August 13, 2012
Received by editor(s) in revised form:
January 30, 2013
Published electronically:
July 6, 2015
Additional Notes:
The second author was partially supported by NSF Grants DMS-0600905 and DMS-0901447
Article copyright:
© Copyright 2015
University Press, Inc.