Arakelov motivic cohomology I
Authors:
Andreas Holmstrom and Jakob Scholbach
Journal:
J. Algebraic Geom. 24 (2015), 719-754
DOI:
https://doi.org/10.1090/jag/648
Published electronically:
April 23, 2015
MathSciNet review:
3383602
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
This paper introduces a new cohomology theory for schemes of finite type over an arithmetic ring. The main motivation for this Arakelov-theoretic version of motivic cohomology is the conjecture on special values of $L$-functions and zeta functions formulated by the second author. Taking advantage of the six functors formalism in motivic stable homotopy theory, we establish a number of formal properties, including pullbacks for arbitrary morphisms, pushforwards for projective morphisms between regular schemes, localization sequences, $h$-descent. We round off the picture with a purity result and a higher arithmetic Riemann-Roch theorem.
In a sequel to this paper, we relate Arakelov motivic cohomology to classical constructions such as arithmetic $K$ and Chow groups and the height pairing.
References
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque 314 (2007), x+466 pp. (2008) (French, with English and French summaries). MR 2423375
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986) Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 1–25. MR 923131, DOI https://doi.org/10.1007/BFb0078364
- José Ignacio Burgos Gil and Elisenda Feliu, Higher arithmetic Chow groups, Comment. Math. Helv. 87 (2012), no. 3, 521–587. MR 2980520, DOI https://doi.org/10.4171/CMH/262
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI https://doi.org/10.1017/S1474748007000011
- Ulrich Bunke and Thomas Schick, Smooth $K$-theory, Astérisque 328 (2009), 45–135 (2010) (English, with English and French summaries). MR 2664467
- José Ignacio Burgos, A $C^\infty $ logarithmic Dolbeault complex, Compositio Math. 92 (1994), no. 1, 61–86. MR 1275721
- Jose Ignacio Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335–377. MR 1489119
- Jose Ignacio Burgos and Steve Wang, Higher Bott-Chern forms and Beilinson’s regulator, Invent. Math. 132 (1998), no. 2, 261–305. MR 1621424, DOI https://doi.org/10.1007/s002220050224
- Denis-Charles Cisinski and Frédéric Déglise, Triangulated categories of mixed motives, 2009.
- Denis-Charles Cisinski and Frédéric Déglise, Mixed Weil cohomologies, Adv. Math. 230 (2012), no. 1, 55–130. MR 2900540, DOI https://doi.org/10.1016/j.aim.2011.10.021
- Frédéric Déglise, Around the Gysin triangle. II, Doc. Math. 13 (2008), 613–675. MR 2466188
- Frédéric Déglise, Orientation theory in the arithmetic case (in preparation), 2011.
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- Christopher Deninger, Motivic $L$-functions and regularized determinants, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 707–743. MR 1265547, DOI https://doi.org/10.1016/0019-3577%2894%2990015-9
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 43–91. MR 944991
- Elisenda Feliu, Adams operations on higher arithmetic $K$-theory, Publ. Res. Inst. Math. Sci. 46 (2010), no. 1, 115–169. MR 2662616, DOI https://doi.org/10.2977/PRIMS/3
- William Fulton and Serge Lang, Riemann-Roch algebra, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277, Springer-Verlag, New York, 1985. MR 801033
- M. Flach and B. Morin, On the Weil-étale topos of regular arithmetic schemes, Doc. Math. 17 (2012), 313–399. MR 2946826
- Alexander B. Goncharov, Regulators, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 295–349. MR 2181826, DOI https://doi.org/10.1007/3-540-27855-9_8
- Henri Gillet, Damian Rössler, and Christophe Soulé, An arithmetic Riemann-Roch theorem in higher degrees, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2169–2189 (English, with English and French summaries). MR 2473633
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), no. 1, 163–203. MR 1038362, DOI https://doi.org/10.2307/1971512
- Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), no. 2, 205–238. MR 1043268, DOI https://doi.org/10.2307/1971493
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041
- Annette Huber, Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, 755–799. MR 1775312
- J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–552. MR 1787949
- Jürgen Jost, Compact Riemann surfaces, 3rd ed., Universitext, Springer-Verlag, Berlin, 2006. An introduction to contemporary mathematics. MR 2247485
- Baptiste Morin, Zeta functions of regular arithmetic schemes at $s=0$, Duke Math. J. 163 (2014), no. 7, 1263–1336. MR 3205726, DOI https://doi.org/10.1215/00127094-2681387
- Fabien Morel and Vladimir Voevodsky, ${\bf A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224
- Jan Nekovář, Beĭlinson’s conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 537–570. MR 1265544, DOI https://doi.org/10.21136/mb.1994.126199
- Joël Riou, Opérations sur la $K$-théorie algébrique et régulateurs via la théorie homotopique des schémas, C. R. Math. Acad. Sci. Paris 344 (2007), no. 1, 27–32 (French, with English and French summaries). MR 2286583, DOI https://doi.org/10.1016/j.crma.2006.11.011
- Joël Riou, Algebraic $K$-theory, ${\bf A}^1$-homotopy and Riemann-Roch theorems, J. Topol. 3 (2010), no. 2, 229–264. MR 2651359, DOI https://doi.org/10.1112/jtopol/jtq005
- Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), no. 1, 61–126. MR 1663919, DOI https://doi.org/10.1215/S0012-7094-99-09603-5
- Oliver Röndigs, Markus Spitzweck, and Paul Arne Østvær, Motivic strict ring models for $K$-theory, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3509–3520. MR 2661551, DOI https://doi.org/10.1090/S0002-9939-10-10394-3
- Jakob Scholbach, Arakelov motivic cohomology II, J. Algebraic Geom. (to appear).
- Jakob Scholbach, Special $L$-values of geometric motives. Preprint (Feb. 2013), available at http://arxiv.org/abs/1003.1215.
- C. Soulé, Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. MR 1208731
- Yuichiro Takeda, Higher arithmetic $K$-theory, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 599–681. MR 2153537
References
- Joseph Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique. I, Astérisque 314 (2007), x+466 pp. (2008) (French, with English and French summaries). MR 2423375 (2009h:14032)
- A. A. Beĭlinson, Height pairing between algebraic cycles, $K$-theory, arithmetic and geometry (Moscow, 1984–1986), volume 1289 of Lecture Notes in Math., Springer, Berlin, 1987, pp. 1–25. MR 0923131 (89h:11027)
- José Ignacio Burgos Gil and Elisenda Feliu, Higher arithmetic Chow groups, Comment. Math. Helv. 87 (2012), no. 3, 521–587. MR 2980520, DOI https://doi.org/10.4171/CMH/262
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1-172. MR 2285241 (2008f:14039)
- Ulrich Bunke and Thomas Schick, Smooth $K$-theory, Astérisque 328 (2009), 45–135 (2010) (English, with English and French summaries). MR 2664467 (2012a:19015)
- José Ignacio Burgos, A $C^\infty$ logarithmic Dolbeault complex, Compositio Math. 92 (1994), no. 1, 61–86. MR 1275721 (95g:32056)
- Jose Ignacio Burgos, Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom. 6 (1997), no. 2, 335–377. MR 1489119 (99d:14015)
- Jose Ignacio Burgos and Steve Wang, Higher Bott-Chern forms and Beilinson’s regulator, Invent. Math. 132 (1998), no. 2, 261–305. MR 1621424 (99j:14008), DOI https://doi.org/10.1007/s002220050224
- Denis-Charles Cisinski and Frédéric Déglise, Triangulated categories of mixed motives, 2009.
- Denis-Charles Cisinski and Frédéric Déglise, Mixed Weil cohomologies, Adv. Math. 230 (2012), no. 1, 55–130. MR 2900540, DOI https://doi.org/10.1016/j.aim.2011.10.021
- Frédéric Déglise, Around the Gysin triangle. II, Doc. Math. 13 (2008), 613–675. MR 2466188 (2009m:14025)
- Frédéric Déglise, Orientation theory in the arithmetic case (in preparation), 2011.
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 0498551 (58 \#16653a)
- Christopher Deninger, Motivic $L$-functions and regularized determinants, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 707–743. MR 1265547 (94m:11077)
- Hélène Esnault and Eckart Viehweg, Deligne-Beĭlinson cohomology, Beĭlinson’s conjectures on special values of $L$-functions, volume 4 of Perspect. Math., Academic Press, Boston, MA, 1988, pp. 43–91. MR 0944991 (89k:14008)
- Elisenda Feliu, Adams operations on higher arithmetic $K$-theory, Publ. Res. Inst. Math. Sci. 46 (2010), no. 1, 115–169. MR 2662616 (2011h:14030), DOI https://doi.org/10.2977/PRIMS/3
- William Fulton and Serge Lang, Riemann-Roch algebra, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 277, Springer-Verlag, New York, 1985. MR 801033 (88h:14011)
- M. Flach and B. Morin, On the Weil-étale topos of regular arithmetic schemes, Doc. Math. 17 (2012), 313–399. MR 2946826
- Alexander B. Goncharov, Regulators, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 295–349. MR 2181826 (2006j:11092), DOI https://doi.org/10.1007/3-540-27855-9_8
- Henri Gillet, Damian Rössler, and Christophe Soulé, An arithmetic Riemann-Roch theorem in higher degrees, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2169–2189 (English, with English and French summaries). MR 2473633 (2010b:14048)
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394 (92d:14016)
- Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math. (2) 131 (1990), no. 1, 163–203. MR 1038362 (91m:14032a), DOI https://doi.org/10.2307/1971512
- Henri Gillet and Christophe Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math. (2) 131 (1990), no. 2, 205–238. MR 1043268 (91m:14032b), DOI https://doi.org/10.2307/1971493
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041 (2003j:18018)
- Annette Huber, Realization of Voevodsky’s motives, J. Algebraic Geom. 9 (2000), no. 4, 755–799. MR 1775312 (2002d:14029)
- J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445–553 (electronic). MR 1787949 (2002b:55014)
- Jürgen Jost, Compact Riemann surfaces, An introduction to contemporary mathematics, 3rd ed., Universitext, Springer-Verlag, Berlin, 2006. MR 2247485 (2007b:32024)
- Baptiste Morin, Zeta functions of regular arithmetic schemes at $s=0$, Duke Math. J. 163 (2014), no. 7, 1263–1336. MR 3205726, DOI https://doi.org/10.1215/00127094-2681387
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224 (2002f:14029)
- Jan Nekovář, Beĭlinson’s conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 537–570. MR 1265544 (95f:11040)
- Joël Riou, Opérations sur la $K$-théorie algébrique et régulateurs via la théorie homotopique des schémas, C. R. Math. Acad. Sci. Paris 344 (2007), no. 1, 27–32 (French, with English and French summaries). MR 2286583 (2007k:19006), DOI https://doi.org/10.1016/j.crma.2006.11.011
- Joël Riou, Algebraic $K$-theory, $\textbf {A}^1$-homotopy and Riemann-Roch theorems, J. Topol. 3 (2010), no. 2, 229–264. MR 2651359 (2011f:19001), DOI https://doi.org/10.1112/jtopol/jtq005
- Damian Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J. 96 (1999), no. 1, 61–126. MR 1663919 (2000a:14029), DOI https://doi.org/10.1215/S0012-7094-99-09603-5
- Oliver Röndigs, Markus Spitzweck, and Paul Arne Østvær, Motivic strict ring models for $K$-theory, Proc. Amer. Math. Soc. 138 (2010), no. 10, 3509–3520. MR 2661551 (2011h:14024), DOI https://doi.org/10.1090/S0002-9939-10-10394-3
- Jakob Scholbach, Arakelov motivic cohomology II, J. Algebraic Geom. (to appear).
- Jakob Scholbach, Special $L$-values of geometric motives. Preprint (Feb. 2013), available at http://arxiv.org/abs/1003.1215.
- C. Soulé, Lectures on Arakelov geometry, With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. MR 1208731 (94e:14031)
- Yuichiro Takeda, Higher arithmetic $K$-theory, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 599–681. MR 2153537 (2006i:14022)
Additional Information
Andreas Holmstrom
Affiliation:
Institut des Hautes Études Scientifiques Le Bois-Marie, 35 Route de Chartres, F-91440 Bures-sur-Yvette, France
Email:
andreas.holmstrom@gmail.com
Jakob Scholbach
Affiliation:
Universität Münster, Mathematisches Institut, Einsteinstrasse 62, D-48149 Münster, Germany
Email:
jakob.scholbach@uni-muenster.de
Received by editor(s):
October 10, 2012
Received by editor(s) in revised form:
June 26, 2013
Published electronically:
April 23, 2015
Article copyright:
© Copyright 2015
University Press, Inc.