Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles
Author:
Jack Huizenga
Journal:
J. Algebraic Geom. 25 (2016), 19-75
DOI:
https://doi.org/10.1090/jag/652
Published electronically:
July 29, 2015
MathSciNet review:
3419956
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We compute the cone of effective divisors on the Hilbert scheme of $n$ points in the projective plane. We show that the sections of many stable vector bundles satisfy a natural interpolation condition and that these bundles always give rise to the edge of the effective cone of the Hilbert scheme. To do this, we give a generalization of Gaeta’s theorem on the resolution of the ideal sheaf of a general collection of $n$ points in the plane. This resolution has a natural interpretation in terms of Bridgeland stability, and we observe that ideal sheaves of collections of points are destabilized by exceptional bundles. By studying the Bridgeland stability of exceptional bundles, we also show that our computation of the effective cone of the Hilbert scheme is consistent with a conjecture in a 2013 work by Arcara, Bertram, Coskun and the author which predicts a correspondence between Mori and Bridgeland walls for the Hilbert scheme.
References
- Dan Abramovich and Alexander Polishchuk, Sheaves of $t$-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. MR 2208130, DOI https://doi.org/10.1515/CRELLE.2006.005
- Luis Álvarez-Cónsul and Alastair King, A functorial construction of moduli of sheaves, Invent. Math. 168 (2007), no. 3, 613–666. MR 2299563, DOI https://doi.org/10.1007/s00222-007-0042-5
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. With an appendix by Max Lieblich. MR 2998828, DOI https://doi.org/10.4171/JEMS/354
- Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $\Bbb {P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580–626. MR 3010070, DOI https://doi.org/10.1016/j.aim.2012.11.018
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118, DOI https://doi.org/10.1215/00127094-1444249
- Arend Bayer and Emanuele Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014), no. 3, 707–752. MR 3194493, DOI https://doi.org/10.1090/S0894-0347-2014-00790-6
- Maria Chiara Brambilla, Cokernel bundles and Fibonacci bundles, Math. Nachr. 281 (2008), no. 4, 499–516. MR 2404294, DOI https://doi.org/10.1002/mana.200510620
- Maria Chiara Brambilla, Simplicity of generic Steiner bundles, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), no. 3, 723–735 (English, with English and Italian summaries). MR 2182426
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, DOI https://doi.org/10.1215/S0012-7094-08-14122-5
- H. Cohn, Last term of repeating continued fraction expansion (2012), mathoverflow.net/q/106217.
- H. Davenport, The higher arithmetic, 8th ed., Cambridge University Press, Cambridge, 2008. An introduction to the theory of numbers; With editing and additional material by James H. Davenport. MR 2462408
- Harm Derksen and Jerzy Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479. MR 1758750, DOI https://doi.org/10.1090/S0894-0347-00-00331-3
- J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur ${\bf P}_2({\bf C})$, Math. Ann. 275 (1986), no. 1, 25–48 (French). MR 849052, DOI https://doi.org/10.1007/BF01458581
- J.-M. Drezet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur ${\bf P}_2({\bf C})$, J. Reine Angew. Math. 380 (1987), 14–58 (French). MR 916199, DOI https://doi.org/10.1515/crll.1987.380.14
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur ${\bf P}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 237496, DOI https://doi.org/10.2307/2373541
- J. Fogarty, Algebraic families on an algebraic surface. II. The Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 95 (1973), 660–687. MR 335512, DOI https://doi.org/10.2307/2373734
- Lothar Göttsche and André Hirschowitz, Weak Brill-Noether for vector bundles on the projective plane, Algebraic geometry (Catania, 1993/Barcelona, 1994) Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 63–74. MR 1651090
- J. Le Potier, Lectures on vector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997. Translated by A. Maciocia. MR 1428426
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199, DOI https://doi.org/10.1090/S1056-3911-05-00418-2
- J. Huizenga, Homeomorphisms of the rationals (2012), mathoverflow.net/q/105758.
- Jack Huizenga, Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane, Int. Math. Res. Not. IMRN 21 (2013), 4829–4873. MR 3123668, DOI https://doi.org/10.1093/imrn/rns195
- Jack W. Huizenga, Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–Harvard University. MR 3054910
- G. Ottaviani, Varietà proiettive di codimensione piccola, Ist. nazion. di alta matematica F. Severi, 2, Aracne, Rome, 1995.
- D. Savitt, Palindromic continued fraction (2012), mathoverflow.net/q/106279.
- Aidan Schofield, Semi-invariants of quivers, J. London Math. Soc. (2) 43 (1991), no. 3, 385–395. MR 1113382, DOI https://doi.org/10.1112/jlms/s2-43.3.385
- Aidan Schofield and Michel van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math. (N.S.) 12 (2001), no. 1, 125–138. MR 1908144, DOI https://doi.org/10.1016/S0019-3577%2801%2980010-0
- Yukinobu Toda, Moduli stacks and invariants of semistable objects on $K3$ surfaces, Adv. Math. 217 (2008), no. 6, 2736–2781. MR 2397465, DOI https://doi.org/10.1016/j.aim.2007.11.010
References
- Dan Abramovich and Alexander Polishchuk, Sheaves of $t$-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89–130. MR 2208130 (2007g:14014), DOI https://doi.org/10.1515/CRELLE.2006.005
- Luis Álvarez-Cónsul and Alastair King, A functorial construction of moduli of sheaves, Invent. Math. 168 (2007), no. 3, 613–666. MR 2299563 (2008d:14015), DOI https://doi.org/10.1007/s00222-007-0042-5
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, with an appendix by Max Lieblich, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. MR 2998828, DOI https://doi.org/10.4171/JEMS/354
- Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $\mathbb {P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580–626. MR 3010070, DOI https://doi.org/10.1016/j.aim.2012.11.018
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118 (2012k:14019), DOI https://doi.org/10.1215/00127094-1444249
- A. Bayer and E. Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014), no. 3, 707–752. MR 3194493
- Maria Chiara Brambilla, Cokernel bundles and Fibonacci bundles, Math. Nachr. 281 (2008), no. 4, 499–516. MR 2404294 (2009f:14079), DOI https://doi.org/10.1002/mana.200510620
- Maria Chiara Brambilla, Simplicity of generic Steiner bundles, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), no. 3, 723–735 (English, with English and Italian summaries). MR 2182426 (2006h:14056)
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815 (2009b:14030), DOI https://doi.org/10.1215/S0012-7094-08-14122-5
- H. Cohn, Last term of repeating continued fraction expansion (2012), mathoverflow.net/q/106217.
- H. Davenport, The higher arithmetic, 8th ed., An introduction to the theory of numbers, with editing and additional material by James H. Davenport, Cambridge University Press, Cambridge, 2008. MR 2462408 (2009j:11001)
- Harm Derksen and Jerzy Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), no. 3, 467–479 (electronic). MR 1758750 (2001g:16031), DOI https://doi.org/10.1090/S0894-0347-00-00331-3
- J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur $\textbf {P}_2(\textbf {C})$, Math. Ann. 275 (1986), no. 1, 25–48 (French). MR 849052 (88b:14014), DOI https://doi.org/10.1007/BF01458581
- J.-M. Drezet, Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\textbf {P}_2(\textbf {C})$, J. Reine Angew. Math. 380 (1987), 14–58 (French). MR 916199 (89e:14016), DOI https://doi.org/10.1515/crll.1987.380.14
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur $\textbf {P}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365 (87e:14014)
- David Eisenbud, The geometry of syzygies, A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. MR 2103875 (2005h:13021)
- John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511–521. MR 0237496 (38 \#5778)
- J. Fogarty, Algebraic families on an algebraic surface. II. The Picard scheme of the punctual Hilbert scheme, Amer. J. Math. 95 (1973), 660–687. MR 0335512 (49 \#293)
- Lothar Göttsche and André Hirschowitz, Weak Brill-Noether for vector bundles on the projective plane, Algebraic geometry (Catania, 1993/Barcelona, 1994) Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 63–74. MR 1651090 (99i:14015)
- J. Le Potier, Lectures on vector bundles, translated by A. Maciocia, Cambridge Studies in Advanced Mathematics, vol. 54, Cambridge University Press, Cambridge, 1997. MR 1428426 (98a:14019)
- Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), no. 1, 175–206. MR 2177199 (2006f:14009), DOI https://doi.org/10.1090/S1056-3911-05-00418-2
- J. Huizenga, Homeomorphisms of the rationals (2012), mathoverflow.net/q/105758.
- Jack Huizenga, Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane, (English summary) Int. Math. Res. Not. IMRN 2013, no. 21, 4829–4873. MR 3123668
- Jack W. Huizenga, Restrictions of Steiner bundles and divisors on the Hilbert scheme of points in the plane, thesis (Ph.D.)–Harvard University, 2012, ProQuest LLC, Ann Arbor, MI. MR 3054910
- G. Ottaviani, Varietà proiettive di codimensione piccola, Ist. nazion. di alta matematica F. Severi, 2, Aracne, Rome, 1995.
- D. Savitt, Palindromic continued fraction (2012), mathoverflow.net/q/106279.
- Aidan Schofield, Semi-invariants of quivers, J. London Math. Soc. (2) 43 (1991), no. 3, 385–395. MR 1113382 (92g:16019), DOI https://doi.org/10.1112/jlms/s2-43.3.385
- Aidan Schofield and Michel van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math. (N.S.) 12 (2001), no. 1, 125–138. MR 1908144 (2003e:16016), DOI https://doi.org/10.1016/S0019-3577%2801%2980010-0
- Yukinobu Toda, Moduli stacks and invariants of semistable objects on $K3$ surfaces, Adv. Math. 217 (2008), no. 6, 2736–2781. MR 2397465 (2009a:14017), DOI https://doi.org/10.1016/j.aim.2007.11.010
Additional Information
Jack Huizenga
Affiliation:
Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
Email:
huizenga@math.uic.edu
Received by editor(s):
November 1, 2012
Received by editor(s) in revised form:
July 20, 2013, and August 8, 2013
Published electronically:
July 29, 2015
Additional Notes:
This material is based upon work supported under a National Science Foundation Mathematical Sciences Postdoctoral Research Fellowship
Article copyright:
© Copyright 2015
University Press, Inc.