Virtual signed Euler characteristics
Authors:
Yunfeng Jiang and Richard P. Thomas
Journal:
J. Algebraic Geom. 26 (2017), 379-397
DOI:
https://doi.org/10.1090/jag/690
Published electronically:
October 21, 2016
MathSciNet review:
3607000
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
Roughly speaking, to any space $M$ with perfect obstruction theory we associate a space $N$ with symmetric perfect obstruction theory. It is a cone over $M$ given by the dual of the obstruction sheaf of $M$ and contains $M$ as its zero section. It is locally the critical locus of a function.
More precisely, in the language of derived algebraic geometry, to any quasi-smooth space $M$ we associate its $(\!-\!1)$-shifted cotangent bundle 𝑁.
By localising from $N$ to its $\mathbb {C}^*$-fixed locus $M$ this gives five notions of a virtual signed Euler characteristic of $M$:
-
The Ciocan-Fontanine-Kapranov/Fantechi-Göttsche signed virtual Euler characteristic of $M$ defined using its own obstruction theory,
-
Graber-Pandharipande’s virtual Atiyah-Bott localisation of the virtual cycle of $N$ to $M$,
-
Behrend’s Kai-weighted Euler characteristic localisation of the virtual cycle of $N$ to $M$,
-
Kiem-Li’s cosection localisation of the virtual cycle of $N$ to $M$,
-
$(-1)^{\textrm {vd}}$ times by the topological Euler characteristic of $M$.
Our main result is that (1)=(2) and (3)=(4)=(5). The first two are deformation invariant while the last three are not.
References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI https://doi.org/10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI https://doi.org/10.1007/s002220050136
- H.-L. Chang, Y.-H. Kiem and J. Li, Torus localization and wall crossing for cosection localized virtual cycles, arXiv:1502.00078.
- Huai-Liang Chang and Jun Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN 18 (2012), 4163–4217. MR 2975379, DOI https://doi.org/10.1093/imrn/rnr186
- Ionuţ Ciocan-Fontanine and Mikhail Kapranov, Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009), no. 3, 1779–1804. MR 2496057, DOI https://doi.org/10.2140/gt.2009.13.1779
- Kevin Costello, Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4, Pure Appl. Math. Q. 9 (2013), no. 1, 73–165. MR 3126501, DOI https://doi.org/10.4310/PAMQ.2013.v9.n1.a3
- B. Davison, The critical CoHA of a self dual quiver with potential, arXiv:1311.7172.
- Barbara Fantechi and Lothar Göttsche, Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010), no. 1, 83–115. MR 2578301, DOI https://doi.org/10.2140/gt.2010.14.83
- T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518. MR 1666787, DOI https://doi.org/10.1007/s002220050293
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Masaki Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985), 193–209. Differential systems and singularities (Luminy, 1983). MR 804053
- Young-Hoon Kiem and Jun Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025–1050. MR 3073883, DOI https://doi.org/10.1090/S0894-0347-2013-00768-7
- D. Maulik and D. Treumann, Constructible functions and Lagrangian cycles on orbifolds, arXiv:1110.3866.
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI https://doi.org/10.1007/s10240-013-0054-1
- Timo Schürg, Deriving Deligne-Mumford stacks with perfect obstruction theories, Geom. Topol. 17 (2013), no. 1, 73–92. MR 3035324, DOI https://doi.org/10.2140/gt.2013.17.73
- Bertrand Toën and Michel Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387–444 (English, with English and French summaries). MR 2493386, DOI https://doi.org/10.1016/j.ansens.2007.05.001
- Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224. MR 2394633, DOI https://doi.org/10.1090/memo/0902
- Cumrun Vafa and Edward Witten, A strong coupling test of $S$-duality, Nuclear Phys. B 431 (1994), no. 1-2, 3–77. MR 1305096, DOI https://doi.org/10.1016/0550-3213%2894%2990097-3
References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI https://doi.org/10.4007/annals.2009.170.1307
- K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45–88. MR 1437495, DOI https://doi.org/10.1007/s002220050136
- H.-L. Chang, Y.-H. Kiem and J. Li, Torus localization and wall crossing for cosection localized virtual cycles, arXiv:1502.00078.
- Huai-Liang Chang and Jun Li, Gromov-Witten invariants of stable maps with fields, Int. Math. Res. Not. IMRN 18 (2012), 4163–4217. MR 2975379, DOI https://doi.org/10.1093/imrn/rnr186
- Ionuţ Ciocan-Fontanine and Mikhail Kapranov, Virtual fundamental classes via dg-manifolds, Geom. Topol. 13 (2009), no. 3, 1779–1804. MR 2496057, DOI https://doi.org/10.2140/gt.2009.13.1779
- Kevin Costello, Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4, Pure Appl. Math. Q. 9 (2013), no. 1, 73–165. MR 3126501, DOI https://doi.org/10.4310/PAMQ.2013.v9.n1.a3
- B. Davison, The critical CoHA of a self dual quiver with potential, arXiv:1311.7172.
- Barbara Fantechi and Lothar Göttsche, Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol. 14 (2010), no. 1, 83–115. MR 2578301, DOI https://doi.org/10.2140/gt.2010.14.83
- T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487–518. MR 1666787, DOI https://doi.org/10.1007/s002220050293
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Masaki Kashiwara, Index theorem for constructible sheaves, Astérisque 130 (1985), 193–209. Differential systems and singularities (Luminy, 1983). MR 804053
- Young-Hoon Kiem and Jun Li, Localizing virtual cycles by cosections, J. Amer. Math. Soc. 26 (2013), no. 4, 1025–1050. MR 3073883, DOI https://doi.org/10.1090/S0894-0347-2013-00768-7
- D. Maulik and D. Treumann, Constructible functions and Lagrangian cycles on orbifolds, arXiv:1110.3866.
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI https://doi.org/10.1007/s10240-013-0054-1
- Timo Schürg, Deriving Deligne-Mumford stacks with perfect obstruction theories, Geom. Topol. 17 (2013), no. 1, 73–92. MR 3035324, DOI https://doi.org/10.2140/gt.2013.17.73
- Bertrand Toën and Michel Vaquié, Moduli of objects in dg-categories, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387–444 (English, with English and French summaries). MR 2493386, DOI https://doi.org/10.1016/j.ansens.2007.05.001
- Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224. MR 2394633, DOI https://doi.org/10.1090/memo/0902
- Cumrun Vafa and Edward Witten, A strong coupling test of $S$-duality, Nuclear Phys. B 431 (1994), no. 1-2, 3–77. MR 1305096, DOI https://doi.org/10.1016/0550-3213%2894%2990097-3
Additional Information
Yunfeng Jiang
Affiliation:
Department of Mathematics, University of Kansas, 405 Jayhawk Boulevard, Lawrence, Kansas 66045
MR Author ID:
714489
Email:
y.jiang@ku.edu
Richard P. Thomas
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
MR Author ID:
636321
Email:
richard.thomas@imperial.ac.uk
Received by editor(s):
September 2, 2014
Published electronically:
October 21, 2016
Article copyright:
© Copyright 2016
University Press, Inc.