On the strange duality conjecture for abelian surfaces II
Authors:
Barbara Bolognese, Alina Marian, Dragos Oprea and Kota Yoshioka
Journal:
J. Algebraic Geom. 26 (2017), 475-511
DOI:
https://doi.org/10.1090/jag/685
Published electronically:
November 10, 2016
MathSciNet review:
3647791
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In the prequel to this paper, two versions of Le Potierâs strange duality conjecture for sheaves over abelian surfaces were studied. A third version is considered here. In the current setup, the isomorphism involves moduli spaces of sheaves with fixed determinant and fixed determinant of the Fourier-Mukai transform on one side, and moduli spaces where both determinants vary, on the other side. We first establish the isomorphism in rank 1 using the representation theory of Heisenberg groups. For product abelian surfaces, the isomorphism is then shown to hold for sheaves with fiber degree $1$ via Fourier-Mukai techniques. By degeneration to product geometries, the duality is obtained generically for a large number of numerical types. Finally, it is shown in great generality that the Verlinde sheaves encoding the variation of the spaces of theta functions are locally free over moduli.
References
- Takeshi Abe, A remark on the 2-dimensional moduli spaces of vector bundles on $K3$ surfaces, Math. Res. Lett. 7 (2000), no. 4, 463â470. MR 1783624, DOI https://doi.org/10.4310/MRL.2000.v7.n4.a12
- Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93) Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17â33. MR 1397056
- Arnaud Beauville, Symplectic singularities, Invent. Math. 139 (2000), no. 3, 541â549. MR 1738060, DOI https://doi.org/10.1007/s002229900043
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
- Arend Bayer and Emanuele MacrĂŹ, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), no. 3, 505â590. MR 3279532, DOI https://doi.org/10.1007/s00222-014-0501-8
- Marcello Bernardara and Georg Hein, The Euclid-Fourier-Mukai algorithm for elliptic surfaces, Asian J. Math. 18 (2014), no. 2, 345â364. MR 3217640, DOI https://doi.org/10.4310/AJM.2014.v18.n2.a8
- Tom Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998), 115â133. MR 1629929, DOI https://doi.org/10.1515/crll.1998.046
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241â291. MR 2376815, DOI https://doi.org/10.1215/S0012-7094-08-14122-5
- Robert Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998. MR 1600388
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
- Brendan Hassett and Yuri Tschinkel, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal. 19 (2009), no. 4, 1065â1080. MR 2570315, DOI https://doi.org/10.1007/s00039-009-0022-6
- Jaya N. Iyer, Projective normality of abelian surfaces given by primitive line bundles, Manuscripta Math. 98 (1999), no. 2, 139â153. MR 1667600, DOI https://doi.org/10.1007/s002290050131
- Ernst Kani, Elliptic curves on abelian surfaces, Manuscripta Math. 84 (1994), no. 2, 199â223. MR 1285957, DOI https://doi.org/10.1007/BF02567454
- Koichi Kurihara and K\B{o}ta Yoshioka, Holomorphic vector bundles on non-algebraic tori of dimension 2, Manuscripta Math. 126 (2008), no. 2, 143â166. MR 2403183, DOI https://doi.org/10.1007/s00229-008-0169-8
- J. Le Potier, Dualité étrange sur le plan projectif, Luminy, December 1996.
- J. Le Potier, FibrĂ© dĂ©terminant et courbes de saut sur les surfaces algĂ©briques, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 213â240 (French). MR 1201385, DOI https://doi.org/10.1017/CBO9780511662652.016
- Jun Li, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129â146. MR 1397985
- Jun Li, Algebraic geometric interpretation of Donaldsonâs polynomial invariants, J. Differential Geom. 37 (1993), no. 2, 417â466. MR 1205451
- Alina Marian and Dragos Oprea, Sheaves on abelian surfaces and strange duality, Math. Ann. 343 (2009), no. 1, 1â33. MR 2448439, DOI https://doi.org/10.1007/s00208-008-0262-z
- Alina Marian and Dragos Oprea, On the strange duality conjecture for abelian surfaces, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1221â1252. MR 3226741, DOI https://doi.org/10.4171/JEMS/459
- Alina Marian and Dragos Oprea, A tour of theta dualities on moduli spaces of sheaves, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 175â201. MR 2457738, DOI https://doi.org/10.1090/conm/465/09103
- Alina Marian and Dragos Oprea, On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 5, 2067â2086 (English, with English and French summaries). MR 3330931
- Alina Marian and Dragos Oprea, Generic strange duality for $K3$ surfaces, Duke Math. J. 162 (2013), no. 8, 1463â1501. With an appendix by Kota Yoshioka. MR 3079253, DOI https://doi.org/10.1215/00127094-2208643
- Hiroki Minamide, Shintarou Yanagida, and K\B{o}ta Yoshioka, Some moduli spaces of Bridgelandâs stability conditions, Int. Math. Res. Not. IMRN 19 (2014), 5264â5327. MR 3267372, DOI https://doi.org/10.1093/imrn/rnt126
- H. Minamide, S. Yanagida, and K. Yoshioka, Fourier-Mukai transforms and the wall-crossing behaviour for Bridgelandâs stability conditions, arXiv:1106.5217.
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287â354. MR 204427, DOI https://doi.org/10.1007/BF01389737
- D. Oprea, Bundles of generalized theta functions on abelian surfaces, arXiv:1106.3890.
- K\B{o}ta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817â884. MR 1872531, DOI https://doi.org/10.1007/s002080100255
- K. Yoshioka, Bridgeland stability conditions and the positive cone of the moduli spaces of stable objects on an abelian surface, arXiv:1206.4838.
References
- Takeshi Abe, A remark on the 2-dimensional moduli spaces of vector bundles on $K3$ surfaces, Math. Res. Lett. 7 (2000), no. 4, 463â470. MR 1783624, DOI https://doi.org/10.4310/MRL.2000.v7.n4.a12
- Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17â33. MR 1397056
- Arnaud Beauville, Symplectic singularities, Invent. Math. 139 (2000), no. 3, 541â549. MR 1738060, DOI https://doi.org/10.1007/s002229900043
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
- Arend Bayer and Emanuele MacrĂŹ, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014), no. 3, 505â590. MR 3279532, DOI https://doi.org/10.1007/s00222-014-0501-8
- Marcello Bernardara and Georg Hein, The Euclid-Fourier-Mukai algorithm for elliptic surfaces, Asian J. Math. 18 (2014), no. 2, 345â364. MR 3217640, DOI https://doi.org/10.4310/AJM.2014.v18.n2.a8
- Tom Bridgeland, Fourier-Mukai transforms for elliptic surfaces, J. Reine Angew. Math. 498 (1998), 115â133. MR 1629929, DOI https://doi.org/10.1515/crll.1998.046
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241â291. MR 2376815, DOI https://doi.org/10.1215/S0012-7094-08-14122-5
- Robert Friedman, Algebraic surfaces and holomorphic vector bundles, Universitext, Springer-Verlag, New York, 1998. MR 1600388
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
- Brendan Hassett and Yuri Tschinkel, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal. 19 (2009), no. 4, 1065â1080. MR 2570315, DOI https://doi.org/10.1007/s00039-009-0022-6
- Jaya N. Iyer, Projective normality of abelian surfaces given by primitive line bundles, Manuscripta Math. 98 (1999), no. 2, 139â153. MR 1667600, DOI https://doi.org/10.1007/s002290050131
- Ernst Kani, Elliptic curves on abelian surfaces, Manuscripta Math. 84 (1994), no. 2, 199â223. MR 1285957, DOI https://doi.org/10.1007/BF02567454
- Koichi Kurihara and KĆta Yoshioka, Holomorphic vector bundles on non-algebraic tori of dimension 2, Manuscripta Math. 126 (2008), no. 2, 143â166. MR 2403183, DOI https://doi.org/10.1007/s00229-008-0169-8
- J. Le Potier, Dualité étrange sur le plan projectif, Luminy, December 1996.
- J. Le Potier, FibrĂ© dĂ©terminant et courbes de saut sur les surfaces algĂ©briques, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 213â240 (French). MR 1201385, DOI https://doi.org/10.1017/CBO9780511662652.016
- Jun Li, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129â146. MR 1397985
- Jun Li, Algebraic geometric interpretation of Donaldsonâs polynomial invariants, J. Differential Geom. 37 (1993), no. 2, 417â466. MR 1205451
- Alina Marian and Dragos Oprea, Sheaves on abelian surfaces and strange duality, Math. Ann. 343 (2009), no. 1, 1â33. MR 2448439, DOI https://doi.org/10.1007/s00208-008-0262-z
- Alina Marian and Dragos Oprea, On the strange duality conjecture for abelian surfaces, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1221â1252. MR 3226741, DOI https://doi.org/10.4171/JEMS/459
- Alina Marian and Dragos Oprea, A tour of theta dualities on moduli spaces of sheaves, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 175â201. MR 2457738, DOI https://doi.org/10.1090/conm/465/09103
- Alina Marian and Dragos Oprea, On Verlinde sheaves and strange duality over elliptic Noether-Lefschetz divisors, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 5, 2067â2086 (English, with English and French summaries). MR 3330931
- Alina Marian and Dragos Oprea, Generic strange duality for $K3$ surfaces, Duke Math. J. 162 (2013), no. 8, 1463â1501. With an appendix by Kota Yoshioka. MR 3079253, DOI https://doi.org/10.1215/00127094-2208643
- Hiroki Minamide, Shintarou Yanagida, and KĆta Yoshioka, Some moduli spaces of Bridgelandâs stability conditions, Int. Math. Res. Not. IMRN 19 (2014), 5264â5327. MR 3267372
- H. Minamide, S. Yanagida, and K. Yoshioka, Fourier-Mukai transforms and the wall-crossing behaviour for Bridgelandâs stability conditions, arXiv:1106.5217.
- D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287â354. MR 0204427
- D. Oprea, Bundles of generalized theta functions on abelian surfaces, arXiv:1106.3890.
- KĆta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817â884. MR 1872531, DOI https://doi.org/10.1007/s002080100255
- K. Yoshioka, Bridgeland stability conditions and the positive cone of the moduli spaces of stable objects on an abelian surface, arXiv:1206.4838.
Additional Information
Barbara Bolognese
Affiliation:
Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115
Address at time of publication:
The Fields Institute for Research in Mathematical Sciences, 222 College Street, Room 402, Toronto, Ontario M5T 3J1, Canada
Email:
bbologne@fields.utoronto.ca
Alina Marian
Affiliation:
Department of Mathematics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115
MR Author ID:
689212
Email:
a.marian@neu.edu
Dragos Oprea
Affiliation:
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093-0112
MR Author ID:
734182
Email:
doprea@math.ucsd.edu
Kota Yoshioka
Affiliation:
Department of Mathematics, Faculty of Science, Kobe University, Kobe 657-8501, Japan
MR Author ID:
352192
Email:
yoshioka@math.kobe-u.ac.jp
Received by editor(s):
November 4, 2014
Published electronically:
November 10, 2016
Additional Notes:
The second author was supported by NSF grant DMS 1303389 and a Sloan Foundation Fellowship. The third author was supported by NSF grants DMS 1001486, DMS 1150675 and a Sloan Foundation Fellowship. The fourth author was supported by Grant-in-Aid for Scientific Research 22340010, JSPS
The authors gratefully acknowledge correspondence with Emanuele MacrĂŹ
Article copyright:
© Copyright 2016
University Press, Inc.