$F$-split and $F$-regular varieties with a diagonalizable group action
Authors:
Piotr Achinger, Nathan Ilten and Hendrik Süss
Journal:
J. Algebraic Geom. 26 (2017), 603-654
DOI:
https://doi.org/10.1090/jag/686
Published electronically:
December 9, 2016
MathSciNet review:
3683422
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $H$ be a diagonalizable group over an algebraically closed field $k$ of positive characteristic, and $X$ a normal $k$-variety with an $H$-action. Under a mild hypothesis, e.g. $H$ a torus or $X$ quasiprojective, we construct a certain quotient log pair $(Y,\Delta )$ and show that $X$ is $F$-split ($F$-regular) if and only if the pair $(Y,\Delta )$ is $F$-split ($F$-regular). We relate splittings of $X$ compatible with $H$-invariant subvarieties to compatible splittings of $(Y,\Delta )$, as well as discussing diagonal splittings of $X$. We apply this machinery to analyze the $F$-splitting and $F$-regularity of complexity-one $T$-varieties and toric vector bundles, among other examples.
References
- Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607. MR 2207875, DOI https://doi.org/10.1007/s00208-005-0705-8
- Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The geometry of $T$-varieties, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 17–69. MR 2975658, DOI https://doi.org/10.4171/114-1/2
- Jarod Alper, On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214 (2010), no. 9, 1576–1591. MR 2593684, DOI https://doi.org/10.1016/j.jpaa.2009.11.016
- Klaus Altmann and Lars Petersen, Cox rings of rational complexity-one $T$-varieties, J. Pure Appl. Algebra 216 (2012), no. 5, 1146–1159. MR 2875333, DOI https://doi.org/10.1016/j.jpaa.2011.12.018
- William M. McGovern, The adjoint representation and the adjoint action, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., vol. 131, Springer, Berlin, 2002, pp. 159–238. MR 1925831, DOI https://doi.org/10.1007/978-3-662-05071-2_3
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324
- Michel Demazure, Anneaux gradués normaux, Introduction à la théorie des singularités, II, Travaux en Cours, vol. 37, Hermann, Paris, 1988, pp. 35–68 (French). MR 1074589
- Richard Fedder, $F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR 701505, DOI https://doi.org/10.1090/S0002-9947-1983-0701505-0
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- José González, Milena Hering, Sam Payne, and Hendrik Süß, Cox rings and pseudoeffective cones of projectivized toric vector bundles, Algebra Number Theory 6 (2012), no. 5, 995–1017. MR 2968631, DOI https://doi.org/10.2140/ant.2012.6.995
- Yoshinori Gongyo, Shinnosuke Okawa, Akiyoshi Sannai, and Shunsuke Takagi, Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom. 24 (2015), no. 1, 159–182. MR 3275656, DOI https://doi.org/10.1090/S1056-3911-2014-00641-X
- Philippe Gille and Patrick Polo (eds.), Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 7, Société Mathématique de France, Paris, 2011 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; Revised and annotated edition of the 1970 French original. MR 2867621
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Nobuo Hara, $F$-regularity and $F$-purity of graded rings, J. Algebra 172 (1995), no. 3, 804–818. MR 1324183, DOI https://doi.org/10.1006/jabr.1995.1071
- Mitsuyasu Hashimoto, Surjectivity of multiplication and $F$-regularity of multigraded rings, Commutative algebra (Grenoble/Lyon, 2001) Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 153–170. MR 2013164, DOI https://doi.org/10.1090/conm/331/05908
- Melvin Hochster and Craig Huneke, Tightly closed ideals, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 1, 45–48. MR 919658, DOI https://doi.org/10.1090/S0273-0979-1988-15592-9
- Milena Hering, Mircea Mustaţă, and Sam Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607–640 (English, with English and French summaries). MR 2667788
- Jürgen Hausen and Hendrik Süß, The Cox ring of an algebraic variety with torus action, Adv. Math. 225 (2010), no. 2, 977–1012. MR 2671185, DOI https://doi.org/10.1016/j.aim.2010.03.010
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Shrawan Kumar, Niels Lauritzen, and Jesper Funch Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), no. 3, 603–621. MR 1695207, DOI https://doi.org/10.1007/s002220050320
- A. A. Klyachko, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1001–1039, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 337–375. MR 1024452, DOI https://doi.org/10.1070/IM1990v035n02ABEH000707
- Sur les groupes algébriques, Société Mathématique de France, Paris, 1973 (French). Bull. Soc. Math. France Mém., No. 33; Contributions de Sivaramakrishna Anantharaman et Domingo Luna; Supplément au Bull. Soc. Math. France Tome 101. MR 0318167
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Shigefumi Mori and Shigeru Mukai, Classification of Fano $3$-folds with $B_{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162. MR 641971, DOI https://doi.org/10.1007/BF01170131
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI https://doi.org/10.2307/1971368
- Open problems. Frobenius splitting in algebraic geometry, commutative algebra, and representation theory, Conference at the University of Michigan, https://sites.google.com/site/frobeniussplitting/shedule, 2010.
- Sam Payne, Frobenius splittings of toric varieties, Algebra Number Theory 3 (2009), no. 1, 107–119. MR 2491910, DOI https://doi.org/10.2140/ant.2009.3.107
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216
- Igor R. Shafarevich, Basic algebraic geometry. 1, Translated from the 2007 third Russian edition, Springer, Heidelberg, 2013. Varieties in projective space. MR 3100243
- Karen E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786505, DOI https://doi.org/10.1307/mmj/1030132733
- Karl Schwede and Karen E. Smith, Globally $F$-regular and log Fano varieties, Adv. Math. 224 (2010), no. 3, 863–894. MR 2628797, DOI https://doi.org/10.1016/j.aim.2009.12.020
- Karl Schwede and Kevin Tucker, On the behavior of test ideals under finite morphisms, J. Algebraic Geom. 23 (2014), no. 3, 399–443. MR 3205587, DOI https://doi.org/10.1090/S1056-3911-2013-00610-4
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, DOI https://doi.org/10.1215/kjm/1250523277
- Hendrik Süss, Fano threefolds with 2-torus action: a picture book, Doc. Math. 19 (2014), 905–940. MR 3262075
- Burt Totaro, Hilbert’s 14th problem over finite fields and a conjecture on the cone of curves, Compos. Math. 144 (2008), no. 5, 1176–1198. MR 2457523, DOI https://doi.org/10.1112/S0010437X08003667
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI https://doi.org/10.1016/0022-4049%2891%2990157-W
- He Xin, Frobenius splitting of projective toric bundles, arXiv:1404.2144v1 [math.AG], 2014.
References
- Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607. MR 2207875, DOI https://doi.org/10.1007/s00208-005-0705-8
- Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The geometry of $T$-varieties, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 17–69. MR 2975658, DOI https://doi.org/10.4171/114-1/2
- Jarod Alper, On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214 (2010), no. 9, 1576–1591. MR 2593684, DOI https://doi.org/10.1016/j.jpaa.2009.11.016
- Klaus Altmann and Lars Petersen, Cox rings of rational complexity-one $T$-varieties, J. Pure Appl. Algebra 216 (2012), no. 5, 1146–1159. MR 2875333, DOI https://doi.org/10.1016/j.jpaa.2011.12.018
- William M. McGovern, The adjoint representation and the adjoint action, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia Math. Sci., vol. 131, Springer, Berlin, 2002, pp. 159–238. MR 1925831, DOI https://doi.org/10.1007/978-3-662-05071-2_3
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324
- Michel Demazure, Anneaux gradués normaux, Introduction à la théorie des singularités, II, Travaux en Cours, vol. 37, Hermann, Paris, 1988, pp. 35–68 (French). MR 1074589
- Richard Fedder, $F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR 701505, DOI https://doi.org/10.2307/1999165
- William Fulton, Introduction to toric varieties, The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. MR 1234037
- José González, Milena Hering, Sam Payne, and Hendrik Süß, Cox rings and pseudoeffective cones of projectivized toric vector bundles, Algebra Number Theory 6 (2012), no. 5, 995–1017. MR 2968631, DOI https://doi.org/10.2140/ant.2012.6.995
- Yoshinori Gongyo, Shinnosuke Okawa, Akiyoshi Sannai, and Shunsuke Takagi, Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom. 24 (2015), no. 1, 159–182. MR 3275656, DOI https://doi.org/10.1090/S1056-3911-2014-00641-X
- Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 7, Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64]; a seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud and J-P. Serre; revised and annotated edition of the 1970 French original; edited by Philippe Gille and Patrick Polo. Société Mathématique de France, Paris, 2011 (French). MR 2867621
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Nobuo Hara, $F$-regularity and $F$-purity of graded rings, J. Algebra 172 (1995), no. 3, 804–818. MR 1324183, DOI https://doi.org/10.1006/jabr.1995.1071
- Mitsuyasu Hashimoto, Surjectivity of multiplication and $F$-regularity of multigraded rings, Commutative algebra (Grenoble/Lyon, 2001) Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 153–170. MR 2013164, DOI https://doi.org/10.1090/conm/331/05908
- Melvin Hochster and Craig Huneke, Tightly closed ideals, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 1, 45–48. MR 919658, DOI https://doi.org/10.1090/S0273-0979-1988-15592-9
- Milena Hering, Mircea Mustaţă, and Sam Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607–640 (English, with English and French summaries). MR 2667788
- Jürgen Hausen and Hendrik Süß, The Cox ring of an algebraic variety with torus action, Adv. Math. 225 (2010), no. 2, 977–1012. MR 2671185, DOI https://doi.org/10.1016/j.aim.2010.03.010
- Ivan Arzhantsev, Ulrich Derenthal, Jürgen Hausen, and Antonio Laface, Cox rings, Cambridge Studies in Advanced Mathematics, vol. 144, Cambridge University Press, Cambridge, 2015. MR 3307753
- Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
- Shrawan Kumar, Niels Lauritzen, and Jesper Funch Thomsen, Frobenius splitting of cotangent bundles of flag varieties, Invent. Math. 136 (1999), no. 3, 603–621. MR 1695207, DOI https://doi.org/10.1007/s002220050320
- A. A. Klyachko, Equivariant bundles over toric varieties, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 5, 1001–1039, 1135 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 2, 337–375. MR 1024452
- Sur les groupes algébriques, Bull. Soc. Math. France Mém., No. 33, contributions de Sivaramakrishna Anantharaman et Domingo Luna, supplément au Bull. Soc. Math. France Tome 101, Société Mathématique de France, Paris, 1973 (French). MR 0318167
- James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Shigefumi Mori and Shigeru Mukai, Classification of Fano $3$-folds with $B_{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162. MR 641971, DOI https://doi.org/10.1007/BF01170131
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI https://doi.org/10.2307/1971368
- Open problems. Frobenius splitting in algebraic geometry, commutative algebra, and representation theory, Conference at the University of Michigan, https://sites.google.com/site/frobeniussplitting/shedule, 2010.
- Sam Payne, Frobenius splittings of toric varieties, Algebra Number Theory 3 (2009), no. 1, 107–119. MR 2491910, DOI https://doi.org/10.2140/ant.2009.3.107
- A. Ramanathan, Equations defining Schubert varieties and Frobenius splitting of diagonals, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 61–90. MR 908216
- Igor R. Shafarevich, Basic algebraic geometry. 1, Varieties in projective space, translated from the 2007 third Russian edition, Springer, Heidelberg, 2013. MR 3100243
- Karen E. Smith, Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000), 553–572. MR 1786505, DOI https://doi.org/10.1307/mmj/1030132733
- Karl Schwede and Karen E. Smith, Globally $F$-regular and log Fano varieties, Adv. Math. 224 (2010), no. 3, 863–894. MR 2628797, DOI https://doi.org/10.1016/j.aim.2009.12.020
- Karl Schwede and Kevin Tucker, On the behavior of test ideals under finite morphisms, J. Algebraic Geom. 23 (2014), no. 3, 399–443. MR 3205587, DOI https://doi.org/10.1090/S1056-3911-2013-00610-4
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 0337963 (49 \#2732)
- Hendrik Süss, Fano threefolds with 2-torus action: a picture book, Doc. Math. 19 (2014), 905–940. MR 3262075
- Burt Totaro, Hilbert’s 14th problem over finite fields and a conjecture on the cone of curves, Compos. Math. 144 (2008), no. 5, 1176–1198. MR 2457523, DOI https://doi.org/10.1112/S0010437X08003667
- William C. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979. MR 547117
- Keiichi Watanabe, $F$-regular and $F$-pure normal graded rings, J. Pure Appl. Algebra 71 (1991), no. 2-3, 341–350. MR 1117644, DOI https://doi.org/10.1016/0022-4049%2891%2990157-W
- He Xin, Frobenius splitting of projective toric bundles, arXiv:1404.2144v1 [math.AG], 2014.
Additional Information
Piotr Achinger
Affiliation:
Department of Mathematics, University of California, Berkeley, California 94720
Email:
piotr.achinger@gmail.com
Nathan Ilten
Affiliation:
Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
MR Author ID:
864815
Email:
nilten@sfu.ca
Hendrik Süss
Affiliation:
School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
MR Author ID:
834968
Email:
hendrik.suess@manchester.ac.uk
Received by editor(s):
April 22, 2015
Received by editor(s) in revised form:
November 30, 2015, and December 10, 2015
Published electronically:
December 9, 2016
Article copyright:
© Copyright 2016
University Press, Inc.