Néron-Tate heights of cycles on jacobians
Author:
Robin de Jong
Journal:
J. Algebraic Geom. 27 (2018), 339-381
DOI:
https://doi.org/10.1090/jag/700
Published electronically:
January 25, 2018
MathSciNet review:
3764279
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We develop a method to calculate the Néron-Tate height of tautological integral cycles on jacobians of curves defined over number fields. As examples we obtain closed expressions for the Néron-Tate height of the difference surface, the Abel-Jacobi images of the square of the curve, and of any symmetric theta divisor. As applications we obtain a new effective positive lower bound for the essential minimum of any Abel-Jacobi image of the curve and a proof, in the case of jacobians, of a formula proposed by Autissier relating the Faltings height of a principally polarized abelian variety with the Néron-Tate height of a symmetric theta divisor.
References
- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192 (Russian). MR 0472815
- Pascal Autissier, Hauteur de Faltings et hauteur de Néron-Tate du diviseur thêta, Compos. Math. 142 (2006), no. 6, 1451–1458 (French, with English and French summaries). MR 2278754, DOI https://doi.org/10.1112/S0010437X0600234X
- Matthew Baker and Xander Faber, Metrized graphs, Laplacian operators, and electrical networks, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 15–33. MR 2277605, DOI https://doi.org/10.1090/conm/415/07857
- Matt Baker and Robert Rumely, Harmonic analysis on metrized graphs, Canad. J. Math. 59 (2007), no. 2, 225–275. MR 2310616, DOI https://doi.org/10.4153/CJM-2007-010-2
- A. Beĭlinson, Height pairing between algebraic cycles, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 1–24. MR 902590, DOI https://doi.org/10.1090/conm/067/902590
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
- Spencer Bloch, Height pairings for algebraic cycles, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 119–145. MR 772054, DOI https://doi.org/10.1016/0022-4049%2884%2990032-X
- J.-B. Bost, Intrinsic heights of stable varieties and abelian varieties, Duke Math. J. 82 (1996), no. 1, 21–70. MR 1387221, DOI https://doi.org/10.1215/S0012-7094-96-08202-2
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI https://doi.org/10.1090/S0894-0347-1994-1260106-X
- Antoine Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser., vol. 384, Cambridge Univ. Press, Cambridge, 2011, pp. 1–50. MR 2885340
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI https://doi.org/10.1515/CRELLE.2006.049
- Sara Checcoli, Francesco Veneziano, and Evelina Viada, A sharp Bogomolov-type bound, New York J. Math. 18 (2012), 891–910. MR 2991428
- Ted Chinburg and Robert Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1–44. MR 1195689, DOI https://doi.org/10.1515/crll.1993.434.1
- Zubeyir Cinkir, Admissible invariants of genus 3 curves, Manuscripta Math. 148 (2015), no. 3-4, 317–339. MR 3414479, DOI https://doi.org/10.1007/s00229-015-0759-1
- Zubeyir Cinkir, Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math. 183 (2011), no. 3, 517–562. MR 2772087, DOI https://doi.org/10.1007/s00222-010-0282-7
- Zubeyir Cinkir, The tau constant of a metrized graph and its behavior under graph operations, Electron. J. Combin. 18 (2011), no. 1, Paper 81, 42. MR 2788698
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, Number theory (Tiruchirapalli, 1996) Contemp. Math., vol. 210, Amer. Math. Soc., Providence, RI, 1998, pp. 333–364 (French, with English and French summaries). MR 1478502, DOI https://doi.org/10.1090/conm/210/02795
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II, Comment. Math. Helv. 77 (2002), no. 4, 639–700 (French, with English and French summaries). MR 1949109, DOI https://doi.org/10.1007/PL00012437
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI https://doi.org/10.1090/conm/067/902592
- R. Elkik, Métriques sur les fibrés d’intersection, Duke Math. J. 61 (1990), no. 1, 303–328 (French). MR 1068389, DOI https://doi.org/10.1215/S0012-7094-90-06113-7
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- X. W. C. Faber, The geometric Bogomolov conjecture for curves of small genus, Experiment. Math. 18 (2009), no. 3, 347–367. MR 2555704
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI https://doi.org/10.2307/2007043
- Aurélien Galateau, Une minoration du minimum essentiel sur les variétés abéliennes, Comment. Math. Helv. 85 (2010), no. 4, 775–812 (French, with English and French summaries). MR 2718139, DOI https://doi.org/10.4171/CMH/211
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- H. Gillet and C. Soulé, Arithmetic analogs of the standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 129–140. MR 1265527, DOI https://doi.org/10.1090/pspum/055.1/1265527
- B. H. Gross and C. Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649–679 (English, with English and French summaries). MR 1340948
- Walter Gubler, Höhentheorie, Math. Ann. 298 (1994), no. 3, 427–455 (German). With an appendix by Jürg Kramer. MR 1262769, DOI https://doi.org/10.1007/BF01459743
- Paul Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), no. 1, 23–38. MR 778087, DOI https://doi.org/10.2307/2374455
- Niels Heinz, Admissible metrics for line bundles on curves and abelian varieties over non-Archimedean local fields, Arch. Math. (Basel) 82 (2004), no. 2, 128–139. MR 2047666, DOI https://doi.org/10.1007/s00013-003-4744-7
- Robin de Jong, Admissible constants for genus 2 curves, Bull. Lond. Math. Soc. 42 (2010), no. 3, 405–411. MR 2651934, DOI https://doi.org/10.1112/blms/bdp132
- Nariya Kawazumi, Canonical 2-forms on the moduli space of Riemann surfaces, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 217–237. MR 2497786, DOI https://doi.org/10.4171/055-1/7
- N. Kawazumi, Johnson’s homomorphisms and the Arakelov-Green function, preprint, arxiv:0801.4218.
- Laurent Moret-Bailly, Métriques permises, Astérisque 127 (1985), 29–87 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801918
- Laurent Moret-Bailly, La formule de Noether pour les surfaces arithmétiques, Invent. Math. 98 (1989), no. 3, 491–498 (French). MR 1022303, DOI https://doi.org/10.1007/BF01393833
- Laurent Moret-Bailly, Problèmes de Skolem sur les champs algébriques, Compositio Math. 125 (2001), no. 1, 1–30 (French, with English summary). MR 1818054, DOI https://doi.org/10.1023/A%3A1002686625404
- Atsushi Moriwaki, A sharp slope inequality for general stable fibrations of curves, J. Reine Angew. Math. 480 (1996), 177–195. MR 1420563, DOI https://doi.org/10.1515/crll.1996.480.177
- Atsushi Moriwaki, The continuity of Deligne’s pairing, Internat. Math. Res. Notices 19 (1999), 1057–1066. MR 1725483, DOI https://doi.org/10.1155/S1073792899000562
- Rahul Pandharipande, The $\varkappa $ ring of the moduli of curves of compact type, Acta Math. 208 (2012), no. 2, 335–388. MR 2931383, DOI https://doi.org/10.1007/s11511-012-0078-2
- P. Parent, Heights on square of modular curves, preprint, arxiv:1606.09553.
- Patrice Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), no. 2, 255–283 (French). MR 1092175, DOI https://doi.org/10.1007/BF01446571
- Boris Pioline, A theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces, J. Number Theory 163 (2016), 520–541. MR 3459586, DOI https://doi.org/10.1016/j.jnt.2015.12.021
- Oscar Randal-Williams, Relations among tautological classes revisited, Adv. Math. 231 (2012), no. 3-4, 1773–1785. MR 2964623, DOI https://doi.org/10.1016/j.aim.2012.07.017
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 308104, DOI https://doi.org/10.1007/BF01390094
- Emmanuel Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167–179 (French). MR 1609514, DOI https://doi.org/10.2307/120987
- Robert Wilms, New explicit formulas for Faltings’ delta-invariant, Invent. Math. 209 (2017), no. 2, 481–539. MR 3674221, DOI https://doi.org/10.1007/s00222-016-0713-1
- Kazuhiko Yamaki, Graph invariants and the positivity of the height of the Gross-Schoen cycle for some curves, Manuscripta Math. 131 (2010), no. 1-2, 149–177. MR 2574996, DOI https://doi.org/10.1007/s00229-009-0305-0
- Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. MR 1207481, DOI https://doi.org/10.1007/BF01232429
- Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
- Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1, 77–105. MR 1420712
- Shou-Wu Zhang, Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), no. 1, 159–165. MR 1609518, DOI https://doi.org/10.2307/120986
- Shou-Wu Zhang, Gross-Schoen cycles and dualising sheaves, Invent. Math. 179 (2010), no. 1, 1–73. MR 2563759, DOI https://doi.org/10.1007/s00222-009-0209-3
References
- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192 (Russian). MR 0472815
- Pascal Autissier, Hauteur de Faltings et hauteur de Néron-Tate du diviseur thêta, Compos. Math. 142 (2006), no. 6, 1451–1458 (French, with English and French summaries). MR 2278754, DOI https://doi.org/10.1112/S0010437X0600234X
- Matthew Baker and Xander Faber, Metrized graphs, Laplacian operators, and electrical networks, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 15–33. MR 2277605, DOI https://doi.org/10.1090/conm/415/07857
- Matt Baker and Robert Rumely, Harmonic analysis on metrized graphs, Canad. J. Math. 59 (2007), no. 2, 225–275. MR 2310616, DOI https://doi.org/10.4153/CJM-2007-010-2
- A. Beĭlinson, Height pairing between algebraic cycles, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 1–24. MR 902590, DOI https://doi.org/10.1090/conm/067/902590
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673
- Spencer Bloch, Height pairings for algebraic cycles, Proceedings of the Luminy conference on algebraic $K$-theory (Luminy, 1983), 1984, pp. 119–145. MR 772054, DOI https://doi.org/10.1016/0022-4049%2884%2990032-X
- J.-B. Bost, Intrinsic heights of stable varieties and abelian varieties, Duke Math. J. 82 (1996), no. 1, 21–70. MR 1387221, DOI https://doi.org/10.1215/S0012-7094-96-08202-2
- J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), no. 4, 903–1027. MR 1260106, DOI https://doi.org/10.2307/2152736
- Antoine Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser., vol. 384, Cambridge Univ. Press, Cambridge, 2011, pp. 1–50. MR 2885340
- Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215–235 (French). MR 2244803, DOI https://doi.org/10.1515/CRELLE.2006.049
- Sara Checcoli, Francesco Veneziano, and Evelina Viada, A sharp Bogomolov-type bound, New York J. Math. 18 (2012), 891–910. MR 2991428
- Ted Chinburg and Robert Rumely, The capacity pairing, J. Reine Angew. Math. 434 (1993), 1–44. MR 1195689, DOI https://doi.org/10.1515/crll.1993.434.1
- Zubeyir Cinkir, Admissible invariants of genus 3 curves, Manuscripta Math. 148 (2015), no. 3-4, 317–339. MR 3414479, DOI https://doi.org/10.1007/s00229-015-0759-1
- Zubeyir Cinkir, Zhang’s conjecture and the effective Bogomolov conjecture over function fields, Invent. Math. 183 (2011), no. 3, 517–562. MR 2772087, DOI https://doi.org/10.1007/s00222-010-0282-7
- Zubeyir Cinkir, The tau constant of a metrized graph and its behavior under graph operations, Electron. J. Combin. 18 (2011), no. 1, Paper 81, 42. MR 2788698
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abéliennes, Number theory (Tiruchirapalli, 1996) Contemp. Math., vol. 210, Amer. Math. Soc., Providence, RI, 1998, pp. 333–364 (French, with English and French summaries). MR 1478502, DOI https://doi.org/10.1090/conm/210/02795
- Sinnou David and Patrice Philippon, Minorations des hauteurs normalisées des sous-variétés de variétés abeliennes. II, Comment. Math. Helv. 77 (2002), no. 4, 639–700 (French, with English and French summaries). MR 1949109, DOI https://doi.org/10.1007/PL00012437
- P. Deligne, Le déterminant de la cohomologie, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 93–177 (French). MR 902592, DOI https://doi.org/10.1090/conm/067/902592
- R. Elkik, Métriques sur les fibrés d’intersection, Duke Math. J. 61 (1990), no. 1, 303–328 (French). MR 1068389, DOI https://doi.org/10.1215/S0012-7094-90-06113-7
- G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), no. 3, 349–366 (German). MR 718935, DOI https://doi.org/10.1007/BF01388432
- X. W. C. Faber, The geometric Bogomolov conjecture for curves of small genus, Experiment. Math. 18 (2009), no. 3, 347–367. MR 2555704
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI https://doi.org/10.2307/2007043
- Aurélien Galateau, Une minoration du minimum essentiel sur les variétés abéliennes, Comment. Math. Helv. 85 (2010), no. 4, 775–812 (French, with English and French summaries). MR 2718139, DOI https://doi.org/10.4171/CMH/211
- Henri Gillet and Christophe Soulé, Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174 (1991). MR 1087394
- H. Gillet and C. Soulé, Arithmetic analogs of the standard conjectures, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 129–140. MR 1265527, DOI https://doi.org/10.1090/pspum/055.1/1265527
- B. H. Gross and C. Schoen, The modified diagonal cycle on the triple product of a pointed curve, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 3, 649–679 (English, with English and French summaries). MR 1340948
- Walter Gubler, Höhentheorie, Math. Ann. 298 (1994), no. 3, 427–455 (German). With an appendix by Jürg Kramer. MR 1262769, DOI https://doi.org/10.1007/BF01459743
- Paul Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), no. 1, 23–38. MR 778087, DOI https://doi.org/10.2307/2374455
- Niels Heinz, Admissible metrics for line bundles on curves and abelian varieties over non-Archimedean local fields, Arch. Math. (Basel) 82 (2004), no. 2, 128–139. MR 2047666, DOI https://doi.org/10.1007/s00013-003-4744-7
- Robin de Jong, Admissible constants for genus 2 curves, Bull. Lond. Math. Soc. 42 (2010), no. 3, 405–411. MR 2651934, DOI https://doi.org/10.1112/blms/bdp132
- Nariya Kawazumi, Canonical 2-forms on the moduli space of Riemann surfaces, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 217–237. MR 2497786, DOI https://doi.org/10.4171/055-1/7
- N. Kawazumi, Johnson’s homomorphisms and the Arakelov-Green function, preprint, arxiv:0801.4218.
- Laurent Moret-Bailly, Métriques permises, Astérisque 127 (1985), 29–87 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801918
- Laurent Moret-Bailly, La formule de Noether pour les surfaces arithmétiques, Invent. Math. 98 (1989), no. 3, 491–498 (French). MR 1022303, DOI https://doi.org/10.1007/BF01393833
- Laurent Moret-Bailly, Problèmes de Skolem sur les champs algébriques, Compositio Math. 125 (2001), no. 1, 1–30 (French, with English summary). MR 1818054, DOI https://doi.org/10.1023/A%3A1002686625404
- Atsushi Moriwaki, A sharp slope inequality for general stable fibrations of curves, J. Reine Angew. Math. 480 (1996), 177–195. MR 1420563, DOI https://doi.org/10.1515/crll.1996.480.177
- Atsushi Moriwaki, The continuity of Deligne’s pairing, Internat. Math. Res. Notices 19 (1999), 1057–1066. MR 1725483, DOI https://doi.org/10.1155/S1073792899000562
- Rahul Pandharipande, The $\varkappa$ ring of the moduli of curves of compact type, Acta Math. 208 (2012), no. 2, 335–388. MR 2931383, DOI https://doi.org/10.1007/s11511-012-0078-2
- P. Parent, Heights on square of modular curves, preprint, arxiv:1606.09553.
- Patrice Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), no. 2, 255–283 (French). MR 1092175, DOI https://doi.org/10.1007/BF01446571
- Boris Pioline, A theta lift representation for the Kawazumi-Zhang and Faltings invariants of genus-two Riemann surfaces, J. Number Theory 163 (2016), 520–541. MR 3459586, DOI https://doi.org/10.1016/j.jnt.2015.12.021
- Oscar Randal-Williams, Relations among tautological classes revisited, Adv. Math. 231 (2012), no. 3-4, 1773–1785. MR 2964623, DOI https://doi.org/10.1016/j.aim.2012.07.017
- Michel Raynaud and Laurent Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math. 13 (1971), 1–89 (French). MR 0308104, DOI https://doi.org/10.1007/BF01390094
- Emmanuel Ullmo, Positivité et discrétion des points algébriques des courbes, Ann. of Math. (2) 147 (1998), no. 1, 167–179 (French). MR 1609514, DOI https://doi.org/10.2307/120987
- Robert Wilms, New explicit formulas for Faltings’ delta-invariant, Invent. Math. 209 (2017), no. 2, 481–539. MR 3674221
- Kazuhiko Yamaki, Graph invariants and the positivity of the height of the Gross-Schoen cycle for some curves, Manuscripta Math. 131 (2010), no. 1-2, 149–177. MR 2574996, DOI https://doi.org/10.1007/s00229-009-0305-0
- Shouwu Zhang, Admissible pairing on a curve, Invent. Math. 112 (1993), no. 1, 171–193. MR 1207481, DOI https://doi.org/10.1007/BF01232429
- Shouwu Zhang, Small points and adelic metrics, J. Algebraic Geom. 4 (1995), no. 2, 281–300. MR 1311351
- Shouwu Zhang, Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), no. 1, 77–105. MR 1420712
- Shou-Wu Zhang, Equidistribution of small points on abelian varieties, Ann. of Math. (2) 147 (1998), no. 1, 159–165. MR 1609518, DOI https://doi.org/10.2307/120986
- Shou-Wu Zhang, Gross-Schoen cycles and dualising sheaves, Invent. Math. 179 (2010), no. 1, 1–73. MR 2563759, DOI https://doi.org/10.1007/s00222-009-0209-3
Additional Information
Robin de Jong
Affiliation:
Mathematical Institute, Leiden University, P. O. Box 9512, 2300 RA Leiden, The Netherlands
MR Author ID:
723243
Email:
rdejong@math.leidenuniv.nl
Received by editor(s):
October 14, 2016
Received by editor(s) in revised form:
January 22, 2017
Published electronically:
January 25, 2018
Article copyright:
© Copyright 2018
University Press, Inc.