Pseudo-effective line bundles over holomorphically convex manifolds
Authors:
Xiankui Meng and Xiangyu Zhou
Journal:
J. Algebraic Geom. 28 (2019), 169-200
DOI:
https://doi.org/10.1090/jag/714
Published electronically:
October 16, 2018
MathSciNet review:
3875365
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In the present paper, we consider the pseudo-effective line bundles over holomorphically convex manifolds and obtain some results related to the vanishing, finiteness, and surjectivity of analytic cohomology groups with multiplier ideal sheaves.
References
- Yasuo Akizuki and Shigeo Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266–272. MR 66694
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 150342
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 92067
- Junyan Cao, Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014), no. 11, 1869–1902. MR 3279260, DOI https://doi.org/10.1112/S0010437X14007398
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial $ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Champs magnétiques et inégalités de Morse pour la $d”$-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189–229 (French, with English summary). MR 812325
- Jean-Pierre Demailly, Cohomology of $q$-convex spaces in top degrees, Math. Z. 204 (1990), no. 2, 283–295. MR 1055992, DOI https://doi.org/10.1007/BF02570874
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- J. P. Demailly, Complex analytic and differential geometry, available at https://www-fourier.ujf-grenoble.fr/$\sim$demailly/manuscripts/agbook.pdf.
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI https://doi.org/10.1142/S0129167X01000861
- Klas Diederich and Takeo Ohsawa, Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci. 21 (1985), no. 4, 819–833. MR 817167, DOI https://doi.org/10.2977/prims/1195178932
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118–138 (French). MR 222336, DOI https://doi.org/10.1007/BF01425245
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493, DOI https://doi.org/10.1515/crelle-2012-0036
- Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 98847, DOI https://doi.org/10.2307/1970257
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 (German). MR 121814
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 302938, DOI https://doi.org/10.1007/BF01403182
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. Translated from the German by Alan Huckleberry. MR 580152
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- Qi’an Guan and Xiangyu Zhou, Optimal constant problem in the $L^2$ extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 753–756 (English, with English and French summaries). MR 2981347, DOI https://doi.org/10.1016/j.crma.2012.08.007
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526, DOI https://doi.org/10.4007/annals.2015.182.2.5
- Qi’an Guan and Xiangyu Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math. 202 (2015), no. 2, 635–676. MR 3418242, DOI https://doi.org/10.1007/s00222-014-0575-3
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822, DOI https://doi.org/10.4007/annals.2015.181.3.6
- Qi’An Guan and XiangYu Zhou, Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (2015), no. 1, 35–59. MR 3296330, DOI https://doi.org/10.1007/s11425-014-4946-4
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
- H. Hironaka and H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964), 313–333. MR 171784, DOI https://doi.org/10.1007/BF01361027
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial $ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI https://doi.org/10.1007/BF02391775
- K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1268–1273. MR 66693, DOI https://doi.org/10.1073/pnas.39.12.1268
- Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239–262 (French). MR 95967
- Christophe Mourougane, Théorèmes d’annulation générique pour les fibrés vectoriels semi-négatifs, Bull. Soc. Math. France 127 (1999), no. 1, 115–133 (French, with English and French summaries). MR 1700471
- Shigeo Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1–12. MR 73263, DOI https://doi.org/10.2969/jmsj/00710001
- Shigeo Nakano, Vanishing theorems for weakly $1$-complete manifolds, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 169–179. MR 0367313
- Shigeo Nakano, Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 101–110. MR 0382735, DOI https://doi.org/10.2977/prims/1195192175
- Shigeo Nakano and Tong-Shieng Rhai, Vector bundle version of Ohsawa’s finiteness theorems, Math. Japon. 24 (1979/80), no. 6, 657–664. MR 565553
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269, DOI https://doi.org/10.2307/1971429
- Takeo Ohsawa, Addendum to: “A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds” [Invent. Math. 63 (1981), no. 2, 335–354; MR 83a:32015], Invent. Math. 66 (1982), no. 3, 391–393. MR 662598, DOI https://doi.org/10.1007/BF01389219
- Takeo Ohsawa, Finiteness theorems on weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 853–870. MR 566085, DOI https://doi.org/10.2977/prims/1195187880
- Takeo Ohsawa, On $H^{p,q}(X,\,{\bf B})$ of weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 113–126. MR 613936, DOI https://doi.org/10.2977/prims/1195186706
- Takeo Ohsawa, Isomorphism theorems for cohomology groups of weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 191–232. MR 660827, DOI https://doi.org/10.2977/prims/1195184021
- Takeo Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984), no. 1, 21–38. MR 736089, DOI https://doi.org/10.2977/prims/1195181825
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535
- Takeo Ohsawa, $L^2$ approaches in several complex variables, Springer Monographs in Mathematics, Springer, Tokyo, 2015. Development of Oka-Cartan theory by $L^2$ estimates for the $\overline \partial $ operator. MR 3443603
- Takeo Ohsawa and Kensh\B{o} Takegoshi, Hodge spectral sequence on pseudoconvex domains, Math. Z. 197 (1988), no. 1, 1–12. MR 917846, DOI https://doi.org/10.1007/BF01161626
- Thomas Peternell, Der Kodairasche Verschwindungssatz auf streng pseudokonvexen Räumen. I, Math. Ann. 270 (1985), no. 1, 87–96 (German). MR 769611, DOI https://doi.org/10.1007/BF01455533
- Thomas Peternell, On strongly pseudoconvex Kähler manifolds, Invent. Math. 70 (1982/83), no. 2, 157–168. MR 684170, DOI https://doi.org/10.1007/BF01390726
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 296350, DOI https://doi.org/10.1007/BF01110367
- Yum Tong Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), no. 2, 431–452. MR 755233
- Kenshô Takegoshi, A generalization of vanishing theorems for weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 311–330. MR 613949, DOI https://doi.org/10.2977/prims/1195186719
- Kensh\B{o} Takegoshi, Relative vanishing theorems in analytic spaces, Duke Math. J. 52 (1985), no. 1, 273–279. MR 791302, DOI https://doi.org/10.1215/S0012-7094-85-05215-9
- Kensho Takegoshi, On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds, Osaka J. Math. 34 (1997), no. 4, 783–802. MR 1618661
- Xiangyu Zhou, A survey on $L^2$ extension problem, Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, pp. 291–309. MR 3587471
- Langfeng Zhu, Qi’an Guan, and Xiangyu Zhou, On the Ohsawa-Takegoshi $L^2$ extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (2012), no. 6, 579–601 (English, with English and French summaries). MR 2921602, DOI https://doi.org/10.1016/j.matpur.2011.09.010
References
- Yasuo Akizuki and Shigeo Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266–272. MR 0066694
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 0150342
- N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR 0092067
- Junyan Cao, Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds, Compos. Math. 150 (2014), no. 11, 1869–1902. MR 3279260
- Jean-Pierre Demailly, Estimations $L^{2}$ pour l’opérateur $\bar \partial$ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457–511 (French). MR 690650
- Jean-Pierre Demailly, Champs magnétiques et inégalités de Morse pour la $d''$-cohomologie, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 189–229 (French, with English summary). MR 812325
- Jean-Pierre Demailly, Cohomology of $q$-convex spaces in top degrees, Math. Z. 204 (1990), no. 2, 283–295. MR 1055992
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- J. P. Demailly, Complex analytic and differential geometry, available at https://www-fourier.ujf-grenoble.fr/$\sim$demailly/manuscripts/agbook.pdf.
- Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider, Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math. 12 (2001), no. 6, 689–741. MR 1875649, DOI https://doi.org/10.1142/S0129167X01000861
- Klas Diederich and Takeo Ohsawa, Harmonic mappings and disc bundles over compact Kähler manifolds, Publ. Res. Inst. Math. Sci. 21 (1985), no. 4, 819–833. MR 817167
- Ichiro Enoki, Kawamata-Viehweg vanishing theorem for compact Kähler manifolds, Einstein metrics and Yang-Mills connections (Sanda, 1990) Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 59–68. MR 1215279
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
- Jacques Frisch, Points de platitude d’un morphisme d’espaces analytiques complexes, Invent. Math. 4 (1967), 118–138 (French). MR 0222336
- Osamu Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013), 149–174. MR 3181493
- Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 0098847
- Hans Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. 5 (1960), 64 pp (German). MR 0121814
- Hans Grauert and Oswald Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292 (German). MR 0302938
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331
- Hans Grauert and Reinhold Remmert, Theory of Stein spaces, translated from the German by Alan Huckleberry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 236, Springer-Verlag, Berlin-New York, 1979. MR 580152
- Phillip A. Griffiths, Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 185–251. MR 0258070
- Qi’an Guan and Xiangyu Zhou, Optimal constant problem in the $L^2$ extension theorem, C. R. Math. Acad. Sci. Paris 350 (2012), no. 15-16, 753–756 (English, with English and French summaries). MR 2981347
- Qi’an Guan and Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2) 182 (2015), no. 2, 605–616. MR 3418526
- Qi’an Guan and Xiangyu Zhou, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math. 202 (2015), no. 2, 635–676. MR 3418242
- Qi’an Guan and Xiangyu Zhou, A solution of an $L^2$ extension problem with an optimal estimate and applications, Ann. of Math. (2) 181 (2015), no. 3, 1139–1208. MR 3296822
- Qi’An Guan and XiangYu Zhou, Optimal constant in an $L^2$ extension problem and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (2015), no. 1, 35–59. MR 3296330
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184
- H. Hironaka and H. Rossi, On the equivalence of imbeddings of exceptional complex spaces, Math. Ann. 156 (1964), 313–333. MR 0171784
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 0179443
- K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1268–1273. MR 0066693
- Pierre Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957), 239–262 (French). MR 0095967
- Christophe Mourougane, Théorèmes d’annulation générique pour les fibrés vectoriels semi-négatifs, Bull. Soc. Math. France 127 (1999), no. 1, 115–133 (French, with English and French summaries). MR 1700471
- Shigeo Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1–12. MR 0073263
- Shigeo Nakano, Vanishing theorems for weakly $1$-complete manifolds, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 169–179. MR 0367313
- Shigeo Nakano, Vanishing theorems for weakly $1$-complete manifolds. II, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 101–110. MR 0382735
- Shigeo Nakano and Tong-Shieng Rhai, Vector bundle version of Ohsawa’s finiteness theorems, Math. Japon. 24 (1979/80), no. 6, 657–664. MR 565553
- Alan Michael Nadel, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (1990), no. 3, 549–596. MR 1078269
- Takeo Ohsawa, Addendum to: “A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds” [Invent. Math. 63 (1981), no. 2, 335–354; MR 83a:32015], Invent. Math. 66 (1982), no. 3, 391–393. MR 662598
- Takeo Ohsawa, Finiteness theorems on weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 15 (1979), no. 3, 853–870. MR 566085
- Takeo Ohsawa, On $H^{p,q}(X, \textbf {B})$ of weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 113–126. MR 613936
- Takeo Ohsawa, Isomorphism theorems for cohomology groups of weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 191–232. MR 660827
- Takeo Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984), no. 1, 21–38. MR 736089
- Takeo Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. MR 2153535
- Takeo Ohsawa, $L^2$ approaches in several complex variables, Development of Oka-Cartan theory by $L^2$ estimates for the $\overline \partial$ operator, Springer Monographs in Mathematics, Springer, Tokyo, 2015. MR 3443603
- Takeo Ohsawa and Kenshō Takegoshi, Hodge spectral sequence on pseudoconvex domains, Math. Z. 197 (1988), no. 1, 1–12. MR 917846
- Thomas Peternell, Der Kodairasche Verschwindungssatz auf streng pseudokonvexen Räumen. I, Math. Ann. 270 (1985), no. 1, 87–96 (German). MR 769611
- Thomas Peternell, On strongly pseudoconvex Kähler manifolds, Invent. Math. 70 (1982/83), no. 2, 157–168. MR 684170
- David Prill, The divisor class groups of some rings of holomorphic functions, Math. Z. 121 (1971), 58–80. MR 0296350
- Yum Tong Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), no. 2, 431–452. MR 755233
- Kenshô Takegoshi, A generalization of vanishing theorems for weakly $1$-complete manifolds, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 311–330. MR 613949
- Kenshō Takegoshi, Relative vanishing theorems in analytic spaces, Duke Math. J. 52 (1985), no. 1, 273–279. MR 791302
- Kensho Takegoshi, On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds, Osaka J. Math. 34 (1997), no. 4, 783–802. MR 1618661
- Xiangyu Zhou, A survey on $L^2$ extension problem, Complex geometry and dynamics, Abel Symp., vol. 10, Springer, Cham, 2015, pp. 291–309. MR 3587471
- Langfeng Zhu, Qi’an Guan, and Xiangyu Zhou, On the Ohsawa-Takegoshi $L^2$ extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (2012), no. 6, 579–601 (English, with English and French summaries). MR 2921602
Additional Information
Xiankui Meng
Affiliation:
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People’s Republic of China;
Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, People’s Republic of China
Email:
mengxiankui@amss.ac.cn
Xiangyu Zhou
Affiliation:
Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China – and – School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
MR Author ID:
260186
Email:
xyzhou@math.ac.cn
Received by editor(s):
January 27, 2017
Received by editor(s) in revised form:
July 16, 2017, August 10, 2017, August 15, 2017, September 11, 2017, and November 2, 2017
Published electronically:
October 16, 2018
Additional Notes:
The first author was partially supported by NSFC-11771231. The second author was partially supported by NSFC-11431013.
Article copyright:
© Copyright 2018
University Press, Inc.