A resolution of singularities for Drinfeld’s compactification by stable maps
Author:
Justin Campbell
Journal:
J. Algebraic Geom. 28 (2019), 153-167
DOI:
https://doi.org/10.1090/jag/727
Published electronically:
October 11, 2018
MathSciNet review:
3875364
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Drinfeld’s relative compactification plays a basic role in the theory of automorphic sheaves, and its singularities encode representation-theoretic information in the form of intersection cohomology. We introduce a resolution of singularities consisting of stable maps from nodal deformations of the curve into twisted flag varieties. As an application, we prove that the twisted intersection cohomology sheaf on Drinfeld’s compactification is universally locally acyclic over the moduli stack of $G$-bundles at points sufficiently antidominant relative to their defect.
References
- Dan Abramovich and Frans Oort, Stable maps and Hurwitz schemes in mixed characteristics, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) Contemp. Math., vol. 276, Amer. Math. Soc., Providence, RI, 2001, pp. 89–100. MR 1837111, DOI https://doi.org/10.1090/conm/276/04513
- A. Beilinson, Constructible sheaves are holonomic, Selecta Math. (N.S.) 22 (2016), no. 4, 1797–1819. MR 3573946, DOI https://doi.org/10.1007/s00029-016-0260-z
- A. Braverman, M. Finkelberg, D. Gaitsgory, and I. Mirković, Intersection cohomology of Drinfeld’s compactifications, Selecta Math. (N.S.) 8 (2002), no. 3, 381–418. MR 1931170, DOI https://doi.org/10.1007/s00029-002-8111-5
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI https://doi.org/10.1007/s00222-002-0237-8
- Justin Campbell, Nearby cycles of Whittaker sheaves on Drinfeld’s compactification, Compos. Math. 154 (2018), no. 8, 1775–1800. MR 3830552, DOI https://doi.org/10.1112/s0010437x18007285
- Boris Feigin, Michael Finkelberg, Alexander Kuznetsov, and Ivan Mirković, Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 113–148. MR 1729361, DOI https://doi.org/10.1090/trans2/194/06
- D. Gaitsgory, Twisted Whittaker model and factorizable sheaves, Selecta Math. (N.S.) 13 (2008), no. 4, 617–659. MR 2403306, DOI https://doi.org/10.1007/s00029-008-0053-0
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI https://doi.org/10.1007/978-1-4612-4264-2_12
- Alexander Kuznetsov, Laumon’s resolution of Drinfel′d’s compactification is small, Math. Res. Lett. 4 (1997), no. 2-3, 349–364. MR 1453065, DOI https://doi.org/10.4310/MRL.1997.v4.n3.a4
- Sergey Lysenko, Twisted Whittaker models for metaplectic groups, Geom. Funct. Anal. 27 (2017), no. 2, 289–372. MR 3626614, DOI https://doi.org/10.1007/s00039-017-0403-1
- S. Raskin, Chiral principal series categories I: finite-dimensional calculations, available at http://math.mit.edu/~sraskin/cpsi.pdf (2016).
- Shenghao Sun, Decomposition theorem for perverse sheaves on Artin stacks over finite fields, Duke Math. J. 161 (2012), no. 12, 2297–2310. MR 2972459, DOI https://doi.org/10.1215/00127094-1723657
References
- Dan Abramovich and Frans Oort, Stable maps and Hurwitz schemes in mixed characteristics, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) Contemp. Math., vol. 276, Amer. Math. Soc., Providence, RI, 2001, pp. 89–100. MR 1837111, DOI https://doi.org/10.1090/conm/276/04513
- A. Beilinson, Constructible sheaves are holonomic, Selecta Math. (N.S.) 22 (2016), no. 4, 1797–1819. MR 3573946, DOI https://doi.org/10.1007/s00029-016-0260-z
- A. Braverman, M. Finkelberg, D. Gaitsgory, and I. Mirković, Intersection cohomology of Drinfeld’s compactifications, Selecta Math. (N.S.) 8 (2002), no. 3, 381–418. MR 1931170, DOI https://doi.org/10.1007/s00029-002-8111-5
- A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002), no. 2, 287–384. MR 1933587, DOI https://doi.org/10.1007/s00222-002-0237-8
- Justin Campbell, Nearby cycles of Whittaker sheaves on Drinfeld’s compactification, Compos. Math. 154 (2018), no. 8, 1775–1800. MR 3830552, DOI https://doi.org/10.1112/s0010437x18007285
- Boris Feigin, Michael Finkelberg, Alexander Kuznetsov, and Ivan Mirković, Semi-infinite flags. II. Local and global intersection cohomology of quasimaps’ spaces, Differential topology, infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, vol. 194, Amer. Math. Soc., Providence, RI, 1999, pp. 113–148. MR 1729361, DOI https://doi.org/10.1090/trans2/194/06
- D. Gaitsgory, Twisted Whittaker model and factorizable sheaves, Selecta Math. (N.S.) 13 (2008), no. 4, 617–659. MR 2403306, DOI https://doi.org/10.1007/s00029-008-0053-0
- Maxim Kontsevich, Enumeration of rational curves via torus actions, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. MR 1363062, DOI https://doi.org/10.1007/978-1-4612-4264-2%5Ctextunderscore12
- Alexander Kuznetsov, Laumon’s resolution of Drinfel $^\prime$d’s compactification is small, Math. Res. Lett. 4 (1997), no. 2-3, 349–364. MR 1453065, DOI https://doi.org/10.4310/MRL.1997.v4.n3.a4
- Sergey Lysenko, Twisted Whittaker models for metaplectic groups, Geom. Funct. Anal. 27 (2017), no. 2, 289–372. MR 3626614, DOI https://doi.org/10.1007/s00039-017-0403-1
- S. Raskin, Chiral principal series categories I: finite-dimensional calculations, available at http://math.mit.edu/~sraskin/cpsi.pdf (2016).
- Shenghao Sun, Decomposition theorem for perverse sheaves on Artin stacks over finite fields, Duke Math. J. 161 (2012), no. 12, 2297–2310. MR 2972459, DOI https://doi.org/10.1215/00127094-1723657
Additional Information
Justin Campbell
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication:
Department of Mathematics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125
MR Author ID:
1198566
Email:
jcampbell@caltech.edu
Received by editor(s):
April 11, 2017
Received by editor(s) in revised form:
May 28, 2018
Published electronically:
October 11, 2018
Article copyright:
© Copyright 2018
University Press, Inc.