Spaces with ${\mathbb G}_m$-action, hyperbolic localization and nearby cycles
Author:
Timo Richarz
Journal:
J. Algebraic Geom. 28 (2019), 251-289
DOI:
https://doi.org/10.1090/jag/710
Published electronically:
October 10, 2018
MathSciNet review:
3912059
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We study families of algebraic spaces with ${\mathbb G}_m$-action and prove Braden’s theorem on hyperbolic localization for arbitrary base schemes. As an application, we obtain that hyperbolic localization commutes with nearby cycles.
References
- Pramod N. Achar, Green functions via hyperbolic localization, Doc. Math. 16 (2011), 869–884. MR 2861392, DOI https://doi.org/10.1142/s0218202506001388
- Pramod N. Achar, Anthony Henderson, and Simon Riche, Geometric Satake, Springer correspondence, and small representations II, Represent. Theory 19 (2015), 94–166. MR 3347990, DOI https://doi.org/10.1090/S1088-4165-2015-00465-0
- J. Alper, J. Hall, and D. Rydh, A Luna étale slice theorem for algebraic stacks, arXiv:1504.06467, 2015.
- J. Alper, J. Hall, and D. Rydh, The étale local structure of algebraic stacks, in preparation.
- Sergey Arkhipov and Roman Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, Israel J. Math. 170 (2009), 135–183. With an appendix by Bezrukavnikov and Ivan Mirković. MR 2506322, DOI https://doi.org/10.1007/s11856-009-0024-y
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 366940, DOI https://doi.org/10.2307/1970915
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI https://doi.org/10.1007/s00031-003-0606-4
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- V. G. Drinfeld, On algebraic spaces with an action of ${\mathbb G}_m$, arXiv:math/1308.2604, 2013.
- V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the stack of $G$-bundles on a curve, Camb. J. Math. 3 (2015), no. 1-2, 19–125. MR 3356356, DOI https://doi.org/10.4310/CJM.2015.v3.n1.a2
- V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transform. Groups 19 (2014), no. 2, 313–358. MR 3200429, DOI https://doi.org/10.1007/s00031-014-9267-8
- John Fogarty, Fixed point schemes, Bull. Amer. Math. Soc. 77 (1971), 203–204. MR 269661, DOI https://doi.org/10.1090/S0002-9904-1971-12681-2
- Wim H. Hesselink, Concentration under actions of algebraic groups, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 55–89. MR 633514
- T. J. Haines and T. Richarz, The test function conjecture for parahoric local models, arXiv:1801.07094, 2018.
- T. J. Haines and T. Richarz, The test function conjecture for local models of Weil-restricted groups, arXiv:1805.07081, 2018.
- Y. Liu and W. Zheng, Enhanced six operations and base change theorem for Artin stacks, arXiv:1211.5948, 2012.
- Benedictus Margaux, Smoothness of limit functors, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 2, 161–165. MR 3361508, DOI https://doi.org/10.1007/s12044-015-0234-7
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI https://doi.org/10.4007/annals.2007.166.95
- Hiraku Nakajima, Lectures on perverse sheaves on instanton moduli spaces, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 381–436. MR 3752464
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271–282. MR 763421
- Stacks Project, authors of the Stacks project, available at stacks.math.columbia.edu/.
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 337963, DOI https://doi.org/10.1215/kjm/1250523277
- Hideyasu Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605. MR 387294, DOI https://doi.org/10.1215/kjm/1250523005
References
- Pramod N. Achar, Green functions via hyperbolic localization, Doc. Math. 16 (2011), 869–884. MR 2861392
- Pramod N. Achar, Anthony Henderson, and Simon Riche, Geometric Satake, Springer correspondence, and small representations II, Represent. Theory 19 (2015), 94–166. MR 3347990, DOI https://doi.org/10.1090/ert/465
- J. Alper, J. Hall, and D. Rydh, A Luna étale slice theorem for algebraic stacks, arXiv:1504.06467, 2015.
- J. Alper, J. Hall, and D. Rydh, The étale local structure of algebraic stacks, in preparation.
- Sergey Arkhipov and Roman Bezrukavnikov, Perverse sheaves on affine flags and Langlands dual group, with with an appendix by Bezrukavrikov and Ivan Mirković, Israel J. Math. 170 (2009), 135–183. MR 2506322, DOI https://doi.org/10.1007/s11856-009-0024-y
- A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 0366940, DOI https://doi.org/10.2307/1970915
- Tom Braden, Hyperbolic localization of intersection cohomology, Transform. Groups 8 (2003), no. 3, 209–216. MR 1996415, DOI https://doi.org/10.1007/s00031-003-0606-4
- Brian Conrad, Reductive group schemes, Autour des schémas en groupes. Vol. I, Panor. Synthèses, vol. 42/43, Soc. Math. France, Paris, 2014, pp. 93–444 (English, with English and French summaries). MR 3362641
- V. G. Drinfeld, On algebraic spaces with an action of ${\mathbb G}_m$, arXiv:math/1308.2604, 2013.
- V. Drinfeld and D. Gaitsgory, Compact generation of the category of D-modules on the stack of $G$-bundles on a curve, Camb. J. Math. 3 (2015), no. 1-2, 19–125. MR 3356356, DOI https://doi.org/10.4310/CJM.2015.v3.n1.a2
- V. Drinfeld and D. Gaitsgory, On a theorem of Braden, Transform. Groups 19 (2014), no. 2, 313–358. MR 3200429, DOI https://doi.org/10.1007/s00031-014-9267-8
- John Fogarty, Fixed point schemes, Bull. Amer. Math. Soc. 77 (1971), 203–204. MR 0269661, DOI https://doi.org/10.1090/S0002-9904-1971-12681-2
- Wim H. Hesselink, Concentration under actions of algebraic groups, Paul Dubreil and Marie-Paule Malliavin Algebra Seminar, 33rd Year (Paris, 1980) Lecture Notes in Math., vol. 867, Springer, Berlin, 1981, pp. 55–89. MR 633514
- T. J. Haines and T. Richarz, The test function conjecture for parahoric local models, arXiv:1801.07094, 2018.
- T. J. Haines and T. Richarz, The test function conjecture for local models of Weil-restricted groups, arXiv:1805.07081, 2018.
- Y. Liu and W. Zheng, Enhanced six operations and base change theorem for Artin stacks, arXiv:1211.5948, 2012.
- Benedictus Margaux, Smoothness of limit functors, Proc. Indian Acad. Sci. Math. Sci. 125 (2015), no. 2, 161–165. MR 3361508, DOI https://doi.org/10.1007/s12044-015-0234-7
- I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143. MR 2342692, DOI https://doi.org/10.4007/annals.2007.166.95
- Hiraku Nakajima, Lectures on perverse sheaves on instanton moduli spaces, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 381–436. MR 3752464
- T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 2, 271–282. MR 763421
- Stacks Project, authors of the Stacks project, available at stacks.math.columbia.edu/.
- Hideyasu Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28. MR 0337963, DOI https://doi.org/10.1215/kjm/1250523277
- Hideyasu Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975), no. 3, 573–605. MR 0387294, DOI https://doi.org/10.1215/kjm/1250523005
Additional Information
Timo Richarz
Affiliation:
Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
MR Author ID:
1004551
Email:
timo.richarz@uni-due.de
Received by editor(s):
January 19, 2017
Published electronically:
October 10, 2018
Additional Notes:
This work was finished while the author was supported by the Max-Planck-Institut für Mathematik in Bonn. He cordially thanks everyone for their hospitality and the excellent working conditions.
Article copyright:
© Copyright 2018
University Press, Inc.