Intersection theory of toric $b$-divisors in toric varieties
Author:
Ana María Botero
Journal:
J. Algebraic Geom. 28 (2019), 291-338
DOI:
https://doi.org/10.1090/jag/721
Published electronically:
January 10, 2019
MathSciNet review:
3912060
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We introduce toric $b$-divisors on complete smooth toric varieties and a notion of integrability of such divisors. We show that under some positivity assumptions toric $b$-divisors are integrable and that their degree is given as the volume of a convex set. Moreover, we show that the dimension of the space of global sections of a nef toric $b$-divisor is equal to the number of lattice points in this convex set and we give a Hilbert–Samuel-type formula for its asymptotic growth. This generalizes classical results for classical toric divisors on toric varieties. Finally, we relate convex bodies associated to $b$-divisors with Newton–Okounkov bodies. The main motivation for studying toric $b$-divisors is that they locally encode the singularities of the invariant metric on an automorphic line bundle over a toroidal compactification of a mixed Shimura variety of non-compact type.
References
- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192 (Russian). MR 0472815
- S. J. Arakelov, Theory of intersections on the arithmetic surface, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 405–408. MR 0466150
- L. Bonavero, Complete versus projective toric varieties. Examples, Lecture notes of the Summer School 2000: Toric Varieties, 2000.
- Sebastien Boucksom, Tommaso de Fernex, and Charles Favre, The volume of an isolated singularity, Duke Math. J. 161 (2012), no. 8, 1455–1520. MR 2931273, DOI https://doi.org/10.1215/00127094-1593317
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619–716. MR 2218402
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI https://doi.org/10.1017/S1474748007000011
- José Ignacio Burgos Gil, Jürg Kramer, and Ulf Kühn, The singularities of the invariant metric on the Jacobi line bundle, Recent advances in Hodge theory, London Math. Soc. Lecture Note Ser., vol. 427, Cambridge Univ. Press, Cambridge, 2016, pp. 45–77. MR 3409870
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- E. Javier Elizondo, The ring of global sections of multiples of a line bundle on a toric variety, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2527–2529. MR 1401739, DOI https://doi.org/10.1090/S0002-9939-97-03918-X
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI https://doi.org/10.1090/S0273-0979-02-00941-2
- Henri Gillet and Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473–543. MR 1189489, DOI https://doi.org/10.1007/BF01231343
- M. Hering, A. Küronya, and S. Payne, Asymptotic cohomological functions of toric divisors, Adv. Math. 207 (2006), no. 2, 634–645. MR 2271020, DOI https://doi.org/10.1016/j.aim.2005.12.007
- K. Kaveh and A. G. Khovanskii, Convex bodies and algebraic equations on affine varieties, arXiv:0804.4095v1, 2008.
- Kiumars Kaveh and A. G. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012), no. 2, 925–978. MR 2950767, DOI https://doi.org/10.4007/annals.2012.176.2.5
- Kiumars Kaveh and Askold Khovanskii, Convex bodies and multiplicities of ideals, Proc. Steklov Inst. Math. 286 (2014), no. 1, 268–284. Reprint of Tr. Mat. Inst. Steklova 286 (2014), 291–307. MR 3482603, DOI https://doi.org/10.1134/S0081543814060169
- Jürg Kramer and Anna-Maria von Pippich, Snapshots of modern mathematics from Oberwolfach: special values of zeta functions and areas of triangles, Notices Amer. Math. Soc. 63 (2016), no. 8, 917–922. MR 3524495, DOI https://doi.org/10.1090/noti1413
- Antonio Laface and Mauricio Velasco, A survey on Cox rings, Geom. Dedicata 139 (2009), 269–287. MR 2481851, DOI https://doi.org/10.1007/s10711-008-9329-y
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI https://doi.org/10.24033/asens.2109
- D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272. MR 471627, DOI https://doi.org/10.1007/BF01389790
- Andrei Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), no. 3, 405–411. MR 1400312, DOI https://doi.org/10.1007/s002220050081
- Andrei Okounkov, Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) Progr. Math., vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347. MR 1995384
References
- S. Ju. Arakelov, An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1179–1192 (Russian). MR 0472815
- S. J. Arakelov, Theory of intersections on the arithmetic surface, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 405–408. MR 0466150
- L. Bonavero, Complete versus projective toric varieties. Examples, Lecture notes of the Summer School 2000: Toric Varieties, 2000.
- Sebastien Boucksom, Tommaso de Fernex, and Charles Favre, The volume of an isolated singularity, Duke Math. J. 161 (2012), no. 8, 1455–1520. MR 2931273, DOI https://doi.org/10.1215/00127094-1593317
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619–716. MR 2218402
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI https://doi.org/10.1017/S1474748007000011
- José Ignacio Burgos Gil, Jürg Kramer, and Ulf Kühn, The singularities of the invariant metric on the Jacobi line bundle, Recent advances in Hodge theory, London Math. Soc. Lecture Note Ser., vol. 427, Cambridge Univ. Press, Cambridge, 2016, pp. 45–77. MR 3409870
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
- E. Javier Elizondo, The ring of global sections of multiples of a line bundle on a toric variety, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2527–2529. MR 1401739, DOI https://doi.org/10.1090/S0002-9939-97-03918-X
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI https://doi.org/10.1090/S0273-0979-02-00941-2
- Henri Gillet and Christophe Soulé, An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), no. 3, 473–543. MR 1189489, DOI https://doi.org/10.1007/BF01231343
- M. Hering, A. Küronya, and S. Payne, Asymptotic cohomological functions of toric divisors, Adv. Math. 207 (2006), no. 2, 634–645. MR 2271020, DOI https://doi.org/10.1016/j.aim.2005.12.007
- K. Kaveh and A. G. Khovanskii, Convex bodies and algebraic equations on affine varieties, arXiv:0804.4095v1, 2008.
- Kiumars Kaveh and A. G. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. of Math. (2) 176 (2012), no. 2, 925–978. MR 2950767, DOI https://doi.org/10.4007/annals.2012.176.2.5
- Kiumars Kaveh and Askold Khovanskii, Convex bodies and multiplicities of ideals, Proc. Steklov Inst. Math. 286 (2014), no. 1, 268–284. MR 3482603, DOI https://doi.org/10.1134/S0081543814060169
- Jürg Kramer and Anna-Maria von Pippich, Snapshots of modern mathematics from Oberwolfach: special values of zeta functions and areas of triangles, Notices Amer. Math. Soc. 63 (2016), no. 8, 917–922. MR 3524495, DOI https://doi.org/10.1090/noti1413
- Antonio Laface and Mauricio Velasco, A survey on Cox rings, Geom. Dedicata 139 (2009), 269–287. MR 2481851, DOI https://doi.org/10.1007/s10711-008-9329-y
- Robert Lazarsfeld and Mircea Mustaţă, Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 783–835 (English, with English and French summaries). MR 2571958, DOI https://doi.org/10.24033/asens.2109
- D. Mumford, Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239–272. MR 471627, DOI https://doi.org/10.1007/BF01389790
- Andrei Okounkov, Brunn-Minkowski inequality for multiplicities, Invent. Math. 125 (1996), no. 3, 405–411. MR 1400312, DOI https://doi.org/10.1007/s002220050081
- Andrei Okounkov, Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) Progr. Math., vol. 213, Birkhäuser Boston, Boston, MA, 2003, pp. 329–347. MR 1995384
Additional Information
Ana María Botero
Affiliation:
Institut für Mathematik, Technische Universität Darmstadt, Karolinenplatz 5, 64289 Darmstadt, Germany
Email:
botero@mathematik.tu-darmstadt.de, anaboterocarrillo@gmail.com
Received by editor(s):
April 5, 2017
Received by editor(s) in revised form:
January 8, 2018
Published electronically:
January 10, 2019
Additional Notes:
This project was supported by the IRTG 1800 on Moduli and Automorphic Forms and by the Berlin Mathematical School.
Article copyright:
© Copyright 2019
University Press, Inc.