Skip to Main Content
Journal of Algebraic Geometry

Journal of Algebraic Geometry

Online ISSN 1534-7486; Print ISSN 1056-3911



Cones of Heegner divisors

Authors: Jan Hendrik Bruinier and Martin Möller
Journal: J. Algebraic Geom. 28 (2019), 497-517
Published electronically: April 11, 2019
MathSciNet review: 3959069
Full-text PDF

Abstract | References | Additional Information

Abstract: We show that the cone of primitive Heegner divisors is finitely generated for many orthogonal Shimura varieties, including the moduli space of polarized $K3$-surfaces. The proof relies on the growth of coefficients of modular forms.

References [Enhancements On Off] (What's this?)


Additional Information

Jan Hendrik Bruinier
Affiliation: Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D–64289 Darmstadt, Germany
MR Author ID: 641446

Martin Möller
Affiliation: Institut für Mathematik, Goethe–Universität Frankfurt, Robert-Mayer-Str. 6–8, 60325 Frankfurt am Main, Germany

Received by editor(s): May 21, 2017
Received by editor(s) in revised form: July 9, 2018
Published electronically: April 11, 2019
Additional Notes: The first author was partially supported by DFG grant BR-2163/4-2. Both authors were supported by the LOEWE research unit “Uniformized structures in arithmetic and geometry”.
Article copyright: © Copyright 2019 University Press, Inc.