On motivic vanishing cycles of critical loci
Authors:
Vittoria Bussi, Dominic Joyce and Sven Meinhardt
Journal:
J. Algebraic Geom. 28 (2019), 405-438
DOI:
https://doi.org/10.1090/jag/737
Published electronically:
March 13, 2019
MathSciNet review:
3959067
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
Let $U$ be a smooth scheme over an algebraically closed field $\mathbb K$ of characteristic zero and let $f:U\rightarrow \mathbb A^1$ be a regular function, and write $X=\textrm {Crit}(f)$, as a closed $\mathbb K$-subscheme of $U$. The motivic vanishing cycle $MF_{U,f}^\textrm {mot,\phi }$ is an element of the $\hat \mu$-equivariant motivic Grothendieck ring $\mathcal M^{\hat \mu }_X$, defined by Denef and Loeser, and Looijenga, and used in Kontsevich and Soibelman’s theory of motivic Donaldson–Thomas invariants.
We prove three main results:
(a) $MF_{U,f}^\textrm {mot,\phi }$ depends only on the third-order thickenings $U^{(3)},f^{(3)}$ of $U,f$.
(b) If $V$ is another smooth $\mathbb K$-scheme, $g:V\rightarrow \mathbb A^1$ is regular, $Y=\textrm {Crit}(g)$, and $\Phi :U\rightarrow V$ is an embedding with $f=g\circ \Phi$ and $\Phi \vert _X:X\rightarrow Y$ an isomorphism, then $\Phi \vert _X^*\bigl (MF^\textrm {mot, \phi }_{V,g}\bigr )=MF^\textrm {mot, \phi }_{U,f}\odot \Upsilon (P_\Phi )$ in a certain quotient ring $\overline {\!\!\mathcal M\!} ^{\hat \mu }_X$ of $\mathcal M^{\hat \mu }_X$, where $P_\Phi \rightarrow X$ is a principal $\mathbb Z_2$-bundle associated to $\Phi$ and $\Upsilon :\{$principal $\mathbb Z_2$-bundles on $X\}\rightarrow \overline {\!\!\mathcal M\!} ^{\hat \mu }_X$ a natural morphism.
(c) If $(X,s)$ is an oriented algebraic d-critical locus in the sense of Joyce, there is a natural motive $MF_{X,s}\in \overline {\!\!\mathcal M\!} ^{\hat \mu }_X$, such that if $(X,s)$ is locally modelled on $\textrm {Crit}(f:U\rightarrow \mathbb A^1)$, then $MF_{X,s}$ is locally modelled on $MF_{U,f}^\textrm {mot,\phi }$.
Using results of Pantev, Toën, Vaquié, and Vezzosi, these imply the existence of natural motives on moduli schemes of coherent sheaves on a Calabi–Yau 3-fold equipped with “orientation data”, as required in Kontsevich and Soibelman’s motivic Donaldson–Thomas theory, and on intersections $L\cap M$ of oriented Lagrangians $L,M$ in an algebraic symplectic manifold $(S,\omega )$.
References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI https://doi.org/10.4007/annals.2009.170.1307
- Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce, A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287–1359. MR 3352237, DOI https://doi.org/10.2140/gt.2015.19.1287
- C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, J. Singul. 11 (2015), 85–151. With an appendix by Jörg Schürmann. MR 3353002, DOI https://doi.org/10.5427/jsing.2015.11e
- Christopher Brav, Vittoria Bussi, and Dominic Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, J. Amer. Math. Soc. 32 (2019), no. 2, 399–443. MR 3904157, DOI https://doi.org/10.1090/jams/910
- D. C. Cisinski and F. Déglise, Triangulated categories of mixed motives, arXiv:0912.2110, 2009.
- Ben Davison and Sven Meinhardt, The motivic Donaldson-Thomas invariants of $(-2)$-curves, Algebra Number Theory 11 (2017), no. 6, 1243–1286. MR 3687097, DOI https://doi.org/10.2140/ant.2017.11.1243
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Jan Denef and François Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J. 99 (1999), no. 2, 285–309. MR 1708026, DOI https://doi.org/10.1215/S0012-7094-99-09910-6
- Jan Denef and François Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 327–348. MR 1905328
- Jan Denef and François Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), no. 5, 1031–1040. MR 1923998, DOI https://doi.org/10.1016/S0040-9383%2801%2900016-7
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
- Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562, DOI https://doi.org/10.1007/s00208-009-0397-6
- Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, DOI https://doi.org/10.1093/qmath/ham019
- Dominic Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), no. 2, 289–367. MR 3399099
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI https://doi.org/10.1090/S0065-9266-2011-00630-1
- M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv:0811.2435, 2008.
- Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153, DOI https://doi.org/10.4310/CNTP.2011.v5.n2.a1
- Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
- D. Maulik, Motivic residues and Donaldson–Thomas theory, in preparation, 2013.
- Johannes Nicaise and Julien Sebag, Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math. 168 (2007), no. 1, 133–173. MR 2285749, DOI https://doi.org/10.1007/s00222-006-0029-7
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI https://doi.org/10.1007/s10240-013-0054-1
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182
- Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238. MR 1764202
References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI https://doi.org/10.4007/annals.2009.170.1307
- Oren Ben-Bassat, Christopher Brav, Vittoria Bussi, and Dominic Joyce, A ‘Darboux theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), no. 3, 1287–1359. MR 3352237, DOI https://doi.org/10.2140/gt.2015.19.1287
- C. Brav, V. Bussi, D. Dupont, D. Joyce, and B. Szendrői, Symmetries and stabilization for sheaves of vanishing cycles, with an appendix by Jörg Schürmann, J. Singul. 11 (2015), 85–151. MR 3353002
- Christopher Brav, Vittoria Bussi, and Dominic Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, J. Amer. Math. Soc. 32 (2019), no. 2, 399–443. MR 3904157, DOI https://doi.org/10.1090/jams/910
- D. C. Cisinski and F. Déglise, Triangulated categories of mixed motives, arXiv:0912.2110, 2009.
- Ben Davison and Sven Meinhardt, The motivic Donaldson-Thomas invariants of $(-2)$-curves, Algebra Number Theory 11 (2017), no. 6, 1243–1286. MR 3687097, DOI https://doi.org/10.2140/ant.2017.11.1243
- Jan Denef and François Loeser, Motivic Igusa zeta functions, J. Algebraic Geom. 7 (1998), no. 3, 505–537. MR 1618144
- Jan Denef and François Loeser, Motivic exponential integrals and a motivic Thom-Sebastiani theorem, Duke Math. J. 99 (1999), no. 2, 285–309. MR 1708026, DOI https://doi.org/10.1215/S0012-7094-99-09910-6
- Jan Denef and François Loeser, Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000) Progr. Math., vol. 201, Birkhäuser, Basel, 2001, pp. 327–348. MR 1905328
- Jan Denef and François Loeser, Lefschetz numbers of iterates of the monodromy and truncated arcs, Topology 41 (2002), no. 5, 1031–1040. MR 1923998, DOI https://doi.org/10.1016/S0040-9383%2801%2900016-7
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184
- Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545–569. MR 2578562, DOI https://doi.org/10.1007/s00208-009-0397-6
- Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, DOI https://doi.org/10.1093/qmath/ham019
- Dominic Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), no. 2, 289–367. MR 3399099
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI https://doi.org/10.1090/S0065-9266-2011-00630-1
- M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, arXiv:0811.2435, 2008.
- Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153, DOI https://doi.org/10.4310/CNTP.2011.v5.n2.a1
- Eduard Looijenga, Motivic measures, Astérisque 276 (2002), 267–297. Séminaire Bourbaki, Vol. 1999/2000. MR 1886763
- D. Maulik, Motivic residues and Donaldson–Thomas theory, in preparation, 2013.
- Johannes Nicaise and Julien Sebag, Motivic Serre invariants, ramification, and the analytic Milnor fiber, Invent. Math. 168 (2007), no. 1, 133–173. MR 2285749, DOI https://doi.org/10.1007/s00222-006-0029-7
- Tony Pantev, Bertrand Toën, Michel Vaquié, and Gabriele Vezzosi, Shifted symplectic structures, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271–328. MR 3090262, DOI https://doi.org/10.1007/s10240-013-0054-1
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182
- Vladimir Voevodsky, Triangulated categories of motives over a field, Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, NJ, 2000, pp. 188–238. MR 1764202
Additional Information
Vittoria Bussi
Affiliation:
ICTP, Strada Costiera 11, Trieste, Italy
MR Author ID:
1093359
Email:
vittoria87b@gmail.com
Dominic Joyce
Affiliation:
The Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom
MR Author ID:
306920
Email:
joyce@maths.ox.ac.uk
Sven Meinhardt
Affiliation:
University of Sheffield, School of Mathematics and Statistics, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
MR Author ID:
977816
Email:
S.Meinhardt@shef.ac.uk
Received by editor(s):
April 14, 2014
Received by editor(s) in revised form:
November 20, 2018
Published electronically:
March 13, 2019
Additional Notes:
This research was supported by EPSRC Programme Grant EP/I033343/1 on ‘Motivic invariants and categorification’.
Article copyright:
© Copyright 2019
University Press, Inc.