Stability of associated forms
Authors:
Maksym Fedorchuk and Alexander Isaev
Journal:
J. Algebraic Geom. 28 (2019), 699-720
DOI:
https://doi.org/10.1090/jag/719
Published electronically:
May 23, 2019
MathSciNet review:
3994310
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We show that the associated form, or, equivalently, a Macaulay inverse system, of an Artinian complete intersection of type $(d,\dots , d)$ is polystable. As an application, we obtain an invariant-theoretic variant of the Mather-Yau theorem for homogeneous hypersurface singularities.
References
- Jarod Alper and Alexander Isaev, Associated forms in classical invariant theory and their applications to hypersurface singularities, Math. Ann. 360 (2014), no. 3-4, 799–823. MR 3273646, DOI https://doi.org/10.1007/s00208-014-1054-2
- Jarod Alper and Alexander Isaev, Associated forms and hypersurface singularities: the binary case, J. Reine Angew. Math. 745 (2018), 83–104., DOI https://doi.org/10.1515/crelle-2016-0008
- J. Alper, A. V. Isaev, and N. G. Kruzhilin, Associated forms of binary quartics and ternary cubics, Transform. Groups 21 (2016), no. 3, 593–618. MR 3531742, DOI https://doi.org/10.1007/s00031-015-9343-8
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI https://doi.org/10.1007/BF01389151
- Max Benson, Analytic equivalence of isolated hypersurface singularities defined by homogeneous polynomials, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 111–118. MR 713050
- David A. Buchsbaum and David Eisenbud, Generic free resolutions and a family of generically perfect ideals, Advances in Math. 18 (1975), no. 3, 245–301. MR 396528, DOI https://doi.org/10.1016/0001-8708%2875%2990046-8
- David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224. MR 159860, DOI https://doi.org/10.1090/S0002-9947-1964-0159860-7
- M. G. Eastwood and A. V. Isaev, Extracting invariants of isolated hypersurface singularities from their moduli algebras, Math. Ann. 356 (2013), no. 1, 73–98. MR 3038122, DOI https://doi.org/10.1007/s00208-012-0836-7
- Michael Eastwood and Alexander Isaev, Invariants of Artinian Gorenstein algebras and isolated hypersurface singularities, Developments and retrospectives in Lie theory, Dev. Math., vol. 38, Springer, Cham, 2014, pp. 159–173. MR 3308782, DOI https://doi.org/10.1007/978-3-319-09804-3_7
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- M. Fedorchuk, Direct sum decomposability of polynomials and factorization of associated forms, preprint, available from https://arxiv.org/abs/1705.03452, 2018.
- Maksym Fedorchuk, GIT semistability of Hilbert points of Milnor algebras, Math. Ann. 367 (2017), no. 1-2, 441–460. MR 3606446, DOI https://doi.org/10.1007/s00208-016-1377-2
- G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2290112
- Gert-Martin Greuel and Thuy Huong Pham, Mather-Yau theorem in positive characteristic, J. Algebraic Geom. 26 (2017), no. 2, 347–355. MR 3606998, DOI https://doi.org/10.1090/S1056-3911-2016-00669-0
- Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. Appendix C by Iarrobino and Steven L. Kleiman. MR 1735271
- A. V. Isaev, A criterion for isomorphism of Artinian Gorenstein algebras, J. Commut. Algebra 8 (2016), no. 1, 89–111. MR 3482348, DOI https://doi.org/10.1216/JCA-2016-8-1-89
- A. V. Isaev, On the contravariant of homogeneous forms arising from isolated hypersurface singularities, Internat. J. Math. 27 (2016), no. 12, 1650097, 14. MR 3575921, DOI https://doi.org/10.1142/S0129167X1650097X
- A. V. Isaev and N. G. Kruzhilin, Explicit reconstruction of homogeneous isolated hypersurface singularities from their Milnor algebras, Proc. Amer. Math. Soc. 142 (2014), no. 2, 581–590. MR 3133999, DOI https://doi.org/10.1090/S0002-9939-2013-11822-8
- Joachim Jelisiejew, Classifying local Artinian Gorenstein algebras, Collect. Math. 68 (2017), no. 1, 101–127. MR 3591467, DOI https://doi.org/10.1007/s13348-016-0183-1
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI https://doi.org/10.2307/1971168
- Venkatramani Lakshmibai and Komaranapuram N. Raghavan, Standard monomial theory, Encyclopaedia of Mathematical Sciences, vol. 137, Springer-Verlag, Berlin, 2008. Invariant theoretic approach; Invariant Theory and Algebraic Transformation Groups, 8. MR 2388163
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238 (French). MR 376704, DOI https://doi.org/10.1007/BF01389851
- F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916 original; With an introduction by Paul Roberts. MR 1281612
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI https://doi.org/10.1007/BF01399504
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Günter Scheja and Uwe Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278(279) (1975), 174–190 (German). MR 393056
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
References
- Jarod Alper and Alexander Isaev, Associated forms in classical invariant theory and their applications to hypersurface singularities, Math. Ann. 360 (2014), no. 3-4, 799–823. MR 3273646, DOI https://doi.org/10.1007/s00208-014-1054-2
- Jarod Alper and Alexander Isaev, Associated forms and hypersurface singularities: the binary case, J. Reine Angew. Math. 745 (2018), 83–104., DOI https://doi.org/10.1515/crelle-2016-0008
- J. Alper, A. V. Isaev, and N. G. Kruzhilin, Associated forms of binary quartics and ternary cubics, Transform. Groups 21 (2016), no. 3, 593–618. MR 3531742, DOI https://doi.org/10.1007/s00031-015-9343-8
- David Bayer and Michael Stillman, A criterion for detecting $m$-regularity, Invent. Math. 87 (1987), no. 1, 1–11. MR 862710, DOI https://doi.org/10.1007/BF01389151
- Max Benson, Analytic equivalence of isolated hypersurface singularities defined by homogeneous polynomials, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 111–118. MR 713050
- David A. Buchsbaum and David Eisenbud, Generic free resolutions and a family of generically perfect ideals, Advances in Math. 18 (1975), no. 3, 245–301. MR 0396528, DOI https://doi.org/10.1016/0001-8708%2875%2990046-8
- David A. Buchsbaum and Dock S. Rim, A generalized Koszul complex. II. Depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197–224. MR 0159860, DOI https://doi.org/10.2307/1994241
- M. G. Eastwood and A. V. Isaev, Extracting invariants of isolated hypersurface singularities from their moduli algebras, Math. Ann. 356 (2013), no. 1, 73–98. MR 3038122, DOI https://doi.org/10.1007/s00208-012-0836-7
- Michael Eastwood and Alexander Isaev, Invariants of Artinian Gorenstein algebras and isolated hypersurface singularities, Developments and retrospectives in Lie theory, Dev. Math., vol. 38, Springer, Cham, 2014, pp. 159–173. MR 3308782, DOI https://doi.org/10.1007/978-3-319-09804-3_7
- David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
- M. Fedorchuk, Direct sum decomposability of polynomials and factorization of associated forms, preprint, available from https://arxiv.org/abs/1705.03452, 2018.
- Maksym Fedorchuk, GIT semistability of Hilbert points of Milnor algebras, Math. Ann. 367 (2017), no. 1-2, 441–460. MR 3606446, DOI https://doi.org/10.1007/s00208-016-1377-2
- G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2290112
- Gert-Martin Greuel and Thuy Huong Pham, Mather-Yau theorem in positive characteristic, J. Algebraic Geom. 26 (2017), no. 2, 347–355. MR 3606998, DOI https://doi.org/10.1090/jag/669
- Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Appendix C by Iarrobino and Steven L. Kleiman, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999. MR 1735271
- A. V. Isaev, A criterion for isomorphism of Artinian Gorenstein algebras, J. Commut. Algebra 8 (2016), no. 1, 89–111. MR 3482348, DOI https://doi.org/10.1216/JCA-2016-8-1-89
- A. V. Isaev, On the contravariant of homogeneous forms arising from isolated hypersurface singularities, Internat. J. Math. 27 (2016), no. 12, 1650097, 14 pp. MR 3575921, DOI https://doi.org/10.1142/S0129167X1650097X
- A. V. Isaev and N. G. Kruzhilin, Explicit reconstruction of homogeneous isolated hypersurface singularities from their Milnor algebras, Proc. Amer. Math. Soc. 142 (2014), no. 2, 581–590. MR 3133999, DOI https://doi.org/10.1090/S0002-9939-2013-11822-8
- Joachim Jelisiejew, Classifying local Artinian Gorenstein algebras, Collect. Math. 68 (2017), no. 1, 101–127. MR 3591467, DOI https://doi.org/10.1007/s13348-016-0183-1
- George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299–316. MR 506989, DOI https://doi.org/10.2307/1971168
- Venkatramani Lakshmibai and Komaranapuram N. Raghavan, Standard monomial theory: Invariant theoretic approach, Encyclopaedia of Mathematical Sciences, vol. 137, Invariant Theory and Algebraic Transformation Groups, 8, Springer-Verlag, Berlin, 2008. MR 2388163
- D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238 (French). MR 0376704, DOI https://doi.org/10.1007/BF01389851
- F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical Library, revised reprint of the 1916 original, with an introduction by Paul Roberts, Cambridge University Press, Cambridge, 1994. MR 1281612
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI https://doi.org/10.1007/BF01399504
- D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. MR 1304906
- Günter Scheja and Uwe Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278/279 (1975), 174–190 (German). MR 0393056
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324
Additional Information
Maksym Fedorchuk
Affiliation:
Department of Mathematics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467
MR Author ID:
768613
Email:
maksym.fedorchuk@bc.edu
Alexander Isaev
Affiliation:
Mathematical Sciences Institute, Australian National University, Acton, Canberra, ACT 2601, Australia
MR Author ID:
241631
Email:
alexander.isaev@anu.edu.au
Received by editor(s):
September 29, 2017
Received by editor(s) in revised form:
December 13, 2017, December 16, 2017, and January 23, 2018
Published electronically:
May 23, 2019
Additional Notes:
During the preparation of this work, the first author was supported by the NSA Young Investigator grant H98230-16-1-0061 and Alfred P. Sloan Research Fellowship. The second author was supported by the Australian Research Council.
Article copyright:
© Copyright 2019
University Press, Inc.