Uniqueness of embeddings of the affine line into algebraic groups
Authors:
Peter Feller and Immanuel van Santen
Journal:
J. Algebraic Geom. 28 (2019), 649-698
DOI:
https://doi.org/10.1090/jag/725
Published electronically:
May 31, 2019
MathSciNet review:
3994309
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $Y$ be the underlying variety of a complex connected affine algebraic group. We prove that two embeddings of the affine line $\mathbb {C}$ into $Y$ are the same up to an automorphism of $Y$ provided that $Y$ is not isomorphic to a product of a torus $(\mathbb {C}^\ast )^k$ and one of the three varieties $\mathbb {C}^3$, $\operatorname {SL}_2$, and $\operatorname {PSL}_2$.
References
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
- I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767–823. MR 3039680, DOI https://doi.org/10.1215/00127094-2080132
- Aravind Asok and Fabien Morel, Smooth varieties up to $\Bbb A^1$-homotopy and algebraic $h$-cobordisms, Adv. Math. 227 (2011), no. 5, 1990–2058. MR 2803793, DOI https://doi.org/10.1016/j.aim.2011.04.009
- H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 432626, DOI https://doi.org/10.1007/BF01403135
- Graeme Segal, An introduction to the paper: “Schubert cells, and the cohomology of the spaces $G/P$” [Uspekhi Mat. Nauk 28 (1973), no. 3(171), 3–26; MR 55 #2941] by I. N. Bernshteĭn [Joseph N. Bernstein], I. M. Gel′fand and S. I. Gel′fand, Representation theory, London Math. Soc. Lecture Note Ser., vol. 69, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 111–114. MR 686277
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324
- M. Brion and V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651–680. MR 2017071, DOI https://doi.org/10.1090/S1088-4165-03-00211-5
- Claude Chevalley, Classification des groupes algébriques semi-simples, Springer-Verlag, Berlin, 2005 (French). Collected works. Vol. 3; Edited and with a preface by P. Cartier; With the collaboration of Cartier, A. Grothendieck and M. Lazard. MR 2124841
- Anthony J. Crachiola, On the AK invariant of certain domains, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–Wayne State University. MR 2705802
- P. C. Craighero, A result on $m$-flats in ${\bf A}^n_k$, Rend. Sem. Mat. Univ. Padova 75 (1986), 39–46 (English, with Italian summary). MR 847656
- Julie Decaup and Adrien Dubouloz, Affine lines in the complement of a smooth plane conic, Boll. Unione Mat. Ital. 11 (2018), no. 1, 39–54. MR 3782690, DOI https://doi.org/10.1007/s40574-017-0119-z
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- Amassa Fauntleroy and Andy R. Magid, Quasi-affine surfaces with $G_{a}$-actions, Proc. Amer. Math. Soc. 68 (1978), no. 3, 265–270. MR 472839, DOI https://doi.org/10.1090/S0002-9939-1978-0472839-6
- Jean Frenkel, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. France 85 (1957), 135–220 (French). MR 98200
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Alexander Grothendieck and Michele Raynaud, Revêtements étales et groupe fondamental (SGA 1), http://arxiv.org/abs/math/0206203, 2004.
- R. V. Gurjar and M. Miyanishi, Affine lines on logarithmic ${\bf Q}$-homology planes, Math. Ann. 294 (1992), no. 3, 463–482. MR 1188132, DOI https://doi.org/10.1007/BF01934336
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR 0396773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976
- Zbigniew Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), no. 1, 113–120. MR 884649, DOI https://doi.org/10.1007/BF01457281
- Shulim Kaliman, On extensions of isomorphisms of affine subvarieties of $\mathbb {C}^n$ to automorphisms of $\mathbb {C}^n$ (Russian), Trans. of the 13th All-Union School on the Theory of Operators on Functional Spaces, Kuibyshev, 1988.
- Shulim Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of $k^n$ to automorphisms of $k^n$, Proc. Amer. Math. Soc. 113 (1991), no. 2, 325–334. MR 1076575, DOI https://doi.org/10.1090/S0002-9939-1991-1076575-3
- Shulim Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994), no. 1-3, 411–423. MR 1303505, DOI https://doi.org/10.1007/BF02937521
- T. Kambayashi and David Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672–681. MR 806473
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- Hanspeter Kraft, Challenging problems on affine $n$-space, Astérisque 237 (1996), Exp. No. 802, 5, 295–317. Séminaire Bourbaki, Vol. 1994/95. MR 1423629
- Hanspeter Kraft and Peter Russell, Families of group actions, generic isotriviality, and linearization, Transform. Groups 19 (2014), no. 3, 779–792. MR 3233525, DOI https://doi.org/10.1007/s00031-014-9274-9
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Masayoshi Miyanishi, An algebraic characterization of the affine plane, J. Math. Kyoto Univ. 15 (1975), 169–184. MR 419460, DOI https://doi.org/10.1215/kjm/1250523123
- Masayoshi Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), no. 6, 1469–1485. MR 765587, DOI https://doi.org/10.2307/2374401
- Masayoshi Miyanishi and Tohru Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11–42. MR 564667, DOI https://doi.org/10.1215/kjm/1250522319
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites. MR 1064110
- Nobuharu Onoda and Ken-ichi Yoshida, On Noetherian subrings of an affine domain, Hiroshima Math. J. 12 (1982), no. 2, 377–384. MR 665501
- M. S. Raghunathan and A. Ramanathan, Principal bundles on the affine line, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), no. 2-3, 137–145. MR 813075, DOI https://doi.org/10.1007/BF02840656
- S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), no. 2, 217–224. MR 778124, DOI https://doi.org/10.1007/BF01388970
- A. Ramanathan, Deformations of principal bundles on the projective line, Invent. Math. 71 (1983), no. 1, 165–191. MR 688263, DOI https://doi.org/10.1007/BF01393340
- A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294. MR 788411, DOI https://doi.org/10.1007/BF01388607
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69–77. MR 1157520, DOI https://doi.org/10.1016/0019-3577%2892%2990028-J
- Jean-Pierre Serre, Espaces fibrés algébriques, Annequx de Chow et applications, Seminaire Chevalley, 1958.
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
- Anant R. Shastri, Polynomial representations of knots, Tohoku Math. J. (2) 44 (1992), no. 1, 11–17. MR 1145717, DOI https://doi.org/10.2748/tmj/1178227371
- T. A. Springer, Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. MR 2458469
- V. Srinivas, On the embedding dimension of an affine variety, Math. Ann. 289 (1991), no. 1, 125–132. MR 1087241, DOI https://doi.org/10.1007/BF01446563
- Immanuel Stampfli, Algebraic embeddings of $\Bbb {C}$ into ${\rm SL}_n(\Bbb {C})$, Transform. Groups 22 (2017), no. 2, 525–535. MR 3649466, DOI https://doi.org/10.1007/s00031-015-9358-1
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
- Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 430094, DOI https://doi.org/10.1007/BF01390010
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace ${\bf C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 338423, DOI https://doi.org/10.2969/jmsj/02620241
- Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, vol. 138, Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8. MR 2797018
- Tammo tom Dieck and Ted Petrie, Contractible affine surfaces of Kodaira dimension one, Japan. J. Math. (N.S.) 16 (1990), no. 1, 147–169. MR 1064448, DOI https://doi.org/10.4099/math1924.16.147
- Arno van den Essen, Around the Abhyankar-Moh theorem, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 283–294. MR 2037095
References
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 0379502
- I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767–823. MR 3039680, DOI https://doi.org/10.1215/00127094-2080132
- Aravind Asok and Fabien Morel, Smooth varieties up to $\mathbb {A}^1$-homotopy and algebraic $h$-cobordisms, Adv. Math. 227 (2011), no. 5, 1990–2058. MR 2803793, DOI https://doi.org/10.1016/j.aim.2011.04.009
- H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 0432626, DOI https://doi.org/10.1007/BF01403135
- Graeme Segal, An introduction to the paper: “Schubert cells, and the cohomology of the spaces $G/P$” [Uspekhi Mat. Nauk 28 (1973), no. 3(171), 3–26; MR 55 #2941] by I. N. Bernshteĭn [Joseph N. Bernstein], I. M. Gel $’$fand and S. I. Gel $’$fand, Representation theory, London Math. Soc. Lecture Note Ser., vol. 69, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 111–114. MR 686277
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
- Michel Brion and Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, Progress in Mathematics, vol. 231, Birkhäuser Boston, Inc., Boston, MA, 2005. MR 2107324
- M. Brion and V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651–680. MR 2017071, DOI https://doi.org/10.1090/S1088-4165-03-00211-5
- Claude Chevalley, Classification des groupes algébriques semi-simples, Collected works. Vol. 3, edited and with a preface by P. Cartier, with the collaboration of Cartier, A. Grothendieck, and M. Lazard, Springer-Verlag, Berlin, 2005 (French). MR 2124841
- Anthony J. Crachiola, On the AK invariant of certain domains, Thesis (Ph.D.)–Wayne State University, 2004, ProQuest LLC, Ann Arbor, MI. MR 2705802
- P. C. Craighero, A result on $m$-flats in $\textbf {A}^n_k$, Rend. Sem. Mat. Univ. Padova 75 (1986), 39–46 (English, with Italian summary). MR 847656
- Julie Decaup and Adrien Dubouloz, Affine lines in the complement of a smooth plane conic, Boll. Unione Mat. Ital. 11 (2018), no. 1, 39–54. MR 3782690, DOI https://doi.org/10.1007/s40574-017-0119-z
- David Eisenbud, Commutative algebra: With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960
- Amassa Fauntleroy and Andy R. Magid, Quasi-affine surfaces with $G_{a}$-actions, Proc. Amer. Math. Soc. 68 (1978), no. 3, 265–270. MR 0472839, DOI https://doi.org/10.2307/2043103
- Jean Frenkel, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. France 85 (1957), 135–220 (French). MR 0098200
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167 pp. MR 0217085
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255 pp. MR 0217086
- Alexander Grothendieck and Michele Raynaud, Revêtements étales et groupe fondamental (SGA 1), http://arxiv.org/abs/math/0206203, 2004.
- R. V. Gurjar and M. Miyanishi, Affine lines on logarithmic $\textbf {Q}$-homology planes, Math. Ann. 294 (1992), no. 3, 463–482. MR 1188132, DOI https://doi.org/10.1007/BF01934336
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- James E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, No. 21, Springer-Verlag, New York, 1975. MR 0396773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Second printing, revised, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. MR 499562
- James E. Humphreys, Conjugacy classes in semisimple algebraic groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1343976
- Zbigniew Jelonek, The extension of regular and rational embeddings, Math. Ann. 277 (1987), no. 1, 113–120. MR 884649, DOI https://doi.org/10.1007/BF01457281
- Shulim Kaliman, On extensions of isomorphisms of affine subvarieties of $\mathbb {C}^n$ to automorphisms of $\mathbb {C}^n$ (Russian), Trans. of the 13th All-Union School on the Theory of Operators on Functional Spaces, Kuibyshev, 1988.
- Shulim Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of $k^n$ to automorphisms of $k^n$, Proc. Amer. Math. Soc. 113 (1991), no. 2, 325–334. MR 1076575, DOI https://doi.org/10.2307/2048516
- Shulim Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994), no. 1-3, 411–423. MR 1303505, DOI https://doi.org/10.1007/BF02937521
- T. Kambayashi and David Wright, Flat families of affine lines are affine-line bundles, Illinois J. Math. 29 (1985), no. 4, 672–681. MR 806473
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 0360616
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- Hanspeter Kraft, Challenging problems on affine $n$-space, Séminaire Bourbaki, Vol. 1994/95, Astérisque 237 (1996), Exp. No. 802, 5, 295–317. MR 1423629
- Hanspeter Kraft and Peter Russell, Families of group actions, generic isotriviality, and linearization, Transform. Groups 19 (2014), no. 3, 779–792. MR 3233525, DOI https://doi.org/10.1007/s00031-014-9274-9
- Hideyuki Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. MR 879273
- James S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Masayoshi Miyanishi, An algebraic characterization of the affine plane, J. Math. Kyoto Univ. 15 (1975), 169–184. MR 0419460, DOI https://doi.org/10.1215/kjm/1250523123
- Masayoshi Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), no. 6, 1469–1485. MR 765587, DOI https://doi.org/10.2307/2374401
- Masayoshi Miyanishi and Tohru Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), no. 1, 11–42. MR 564667, DOI https://doi.org/10.1215/kjm/1250522319
- A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, translated from the Russian and with a preface by D. A. Leites, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. MR 1064110
- Nobuharu Onoda and Ken-ichi Yoshida, On Noetherian subrings of an affine domain, Hiroshima Math. J. 12 (1982), no. 2, 377–384. MR 665501
- M. S. Raghunathan and A. Ramanathan, Principal bundles on the affine line, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), no. 2-3, 137–145. MR 813075, DOI https://doi.org/10.1007/BF02840656
- S. Ramanan and A. Ramanathan, Projective normality of flag varieties and Schubert varieties, Invent. Math. 79 (1985), no. 2, 217–224. MR 778124, DOI https://doi.org/10.1007/BF01388970
- A. Ramanathan, Deformations of principal bundles on the projective line, Invent. Math. 71 (1983), no. 1, 165–191. MR 688263, DOI https://doi.org/10.1007/BF01393340
- A. Ramanathan, Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math. 80 (1985), no. 2, 283–294. MR 788411, DOI https://doi.org/10.1007/BF01388607
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 0232770
- R. W. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69–77. MR 1157520, DOI https://doi.org/10.1016/0019-3577%2892%2990028-J
- Jean-Pierre Serre, Espaces fibrés algébriques, Annequx de Chow et applications, Seminaire Chevalley, 1958.
- Jean-Pierre Serre, Cohomologie galoisienne, 5th ed., Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, 1994 (French). MR 1324577
- Anant R. Shastri, Polynomial representations of knots, Tohoku Math. J. (2) 44 (1992), no. 1, 11–17. MR 1145717, DOI https://doi.org/10.2748/tmj/1178227371
- T. A. Springer, Linear algebraic groups, 2nd ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2009. MR 2458469
- V. Srinivas, On the embedding dimension of an affine variety, Math. Ann. 289 (1991), no. 1, 125–132. MR 1087241, DOI https://doi.org/10.1007/BF01446563
- Immanuel Stampfli, Algebraic embeddings of $\mathbb {C}$ into $\textrm {SL}_n(\mathbb {C})$, Transform. Groups 22 (2017), no. 2, 525–535. MR 3649466, DOI https://doi.org/10.1007/s00031-015-9358-1
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 0180554
- Robert Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 0430094, DOI https://doi.org/10.1007/BF01390010
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 0338423, DOI https://doi.org/10.2969/jmsj/02620241
- Dmitry A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Invariant Theory and Algebraic Transformation Groups, 8, Springer, Heidelberg, 2011. MR 2797018
- Tammo tom Dieck and Ted Petrie, Contractible affine surfaces of Kodaira dimension one, Japan. J. Math. (N.S.) 16 (1990), no. 1, 147–169. MR 1064448, DOI https://doi.org/10.4099/math1924.16.147
- Arno van den Essen, Around the Abhyankar-Moh theorem, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000) Springer, Berlin, 2004, pp. 283–294. MR 2037095
Additional Information
Peter Feller
Affiliation:
Department of Mathematics, ETH Zürich, Rämistr. 101, 8092 Zürich, Switzerland
MR Author ID:
1052130
Email:
peter.feller@math.ch
Immanuel van Santen
Affiliation:
Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
Email:
immanuel.van.santen@math.ch
Received by editor(s):
September 10, 2017
Received by editor(s) in revised form:
March 30, 2018, and April 16, 2018
Published electronically:
May 31, 2019
Article copyright:
© Copyright 2019
University Press, Inc.