Geometric syntomic cohomology and vector bundles on the Fargues-Fontaine curve
Author:
Wiesława Nizioł
Journal:
J. Algebraic Geom. 28 (2019), 605-648
DOI:
https://doi.org/10.1090/jag/742
Published electronically:
June 28, 2019
MathSciNet review:
3994308
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We show that geometric syntomic cohomology lifts canonically to the category of Banach-Colmez spaces and study its relation to extensions of modifications of vector bundles on the Fargues-Fontaine curve. We include some computations of geometric syntomic cohomology spaces: they are finite rank $\mathbf {Q}_p$-vector spaces for ordinary varieties, but in the nonordinary case, these cohomology spaces carry much more information; in particular they can have a nontrivial $C$-rank. This dichotomy is reminiscent of the Hodge-Tate period map for $p$-divisible groups.
References
- Yves André, Slope filtrations, Confluentes Math. 1 (2009), no. 1, 1–85. MR 2571693, DOI https://doi.org/10.1142/S179374420900002X
- A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR 862628, DOI https://doi.org/10.1090/conm/055.1/862628
- A. Beilinson, $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571, DOI https://doi.org/10.1090/S0894-0347-2012-00729-2
- A. Beilinson, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1–51. MR 3272051, DOI https://doi.org/10.4310/CJM.2013.v1.n1.a1
- Laurent Berger, Construction de $(\phi ,\Gamma )$-modules: représentations $p$-adiques et $B$-paires, Algebra Number Theory 2 (2008), no. 1, 91–120 (French, with English and French summaries). MR 2377364, DOI https://doi.org/10.2140/ant.2008.2.91
- Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439 (French, with English and French summaries). MR 1956055, DOI https://doi.org/10.1017/S1474748002000099
- Pierre Colmez, Espaces vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186 (French, with English and French summaries). Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules. MR 2493217
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI https://doi.org/10.1007/s00222-016-0683-3
- Frédéric Déglise and Wiesława Nizioł, On $p$-adic absolute Hodge cohomology and syntomic coefficients. I, Comment. Math. Helv. 93 (2018), no. 1, 71–131. MR 3777126, DOI https://doi.org/10.4171/CMH/430
- Laurent Fargues and Jean-Marc Fontaine, Courbes et fibrés vectoriels en théorie de Hodge $p$-adique, Astérisque 406 (2018), xiii+382 (French, with English and French summaries). With a preface by Pierre Colmez. MR 3917141
- Laurent Fargues and Jean-Marc Fontaine, Vector bundles on curves and $p$-adic Hodge theory, Automorphic forms and Galois representations. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 415, Cambridge Univ. Press, Cambridge, 2014, pp. 17–104. MR 3444231
- Laurent Fargues, Quelques résultats et conjectures concernant la courbe, Astérisque 369 (2015), 325–374 (French, with English and French summaries). MR 3379639
- Jean-Marc Fontaine, Presque $C_p$-représentations, Doc. Math. Extra Vol. (2003), 285–385 (French, with English summary). Kazuya Kato’s fiftieth birthday. MR 2046603
- Annette Huber, Mixed motives and their realization in derived categories, Lecture Notes in Mathematics, vol. 1604, Springer-Verlag, Berlin, 1995. MR 1439046
- Kiran S. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447–525. MR 2184462
- Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167 (2018), no. 18, 3455–3532 (French, with English and French summaries). MR 3881201, DOI https://doi.org/10.1215/00127094-2018-0034
- Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, Algebra Number Theory 10 (2016), no. 8, 1695–1790. With appendices by Laurent Berger and Frédéric Déglise. MR 3556797, DOI https://doi.org/10.2140/ant.2016.10.1695
- Bernadette Perrin-Riou, Représentations $p$-adiques ordinaires, Astérisque 223 (1994), 185–220 (French). With an appendix by Luc Illusie; Périodes $p$-adiques (Bures-sur-Yvette, 1988). MR 1293973
- Jean-Pierre Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.) 76 (1999), vi+134 (English, with English and French summaries). MR 1779315
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI https://doi.org/10.1017/fmp.2013.1
References
- Yves André, Slope filtrations, Confluentes Math. 1 (2009), no. 1, 1–85. MR 2571693, DOI https://doi.org/10.1142/S179374420900002X
- A. A. Beĭlinson, Notes on absolute Hodge cohomology, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 35–68. MR 862628, DOI https://doi.org/10.1090/conm/055.1/862628
- A. Beilinson, $p$-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738. MR 2904571, DOI https://doi.org/10.1090/S0894-0347-2012-00729-2
- A. Beilinson, On the crystalline period map, Camb. J. Math. 1 (2013), no. 1, 1–51. MR 3272051, DOI https://doi.org/10.4310/CJM.2013.v1.n1.a1
- Laurent Berger, Construction de $(\phi ,\Gamma )$-modules: représentations $p$-adiques et $B$-paires, Algebra Number Theory 2 (2008), no. 1, 91–120 (French, with English and French summaries). MR 2377364, DOI https://doi.org/10.2140/ant.2008.2.91
- Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439 (French, with English and French summaries). MR 1956055, DOI https://doi.org/10.1017/S1474748002000099
- Pierre Colmez, Espaces vectoriels de dimension finie et représentations de de Rham, Représentations $p$-adiques de groupes $p$-adiques. I. Représentations galoisiennes et $(\phi ,\Gamma )$-modules, Astérisque 319 (2008), 117–186 (French, with English and French summaries). MR 2493217
- Pierre Colmez and Wiesława Nizioł, Syntomic complexes and $p$-adic nearby cycles, Invent. Math. 208 (2017), no. 1, 1–108. MR 3621832, DOI https://doi.org/10.1007/s00222-016-0683-3
- Frédéric Déglise and Wiesława Nizioł, On $p$-adic absolute Hodge cohomology and syntomic coefficients. I, Comment. Math. Helv. 93 (2018), no. 1, 71–131. MR 3777126, DOI https://doi.org/10.4171/CMH/430
- Laurent Fargues and Jean-Marc Fontaine, Courbes et fibrés vectoriels en théorie de Hodge $p$-adique, Astérisque 406 (2018), xiii+382 (French, with English and French summaries). With a preface by Pierre Colmez. MR 3917141
- Laurent Fargues and Jean-Marc Fontaine, Vector bundles on curves and $p$-adic Hodge theory, Automorphic forms and Galois representations. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 415, Cambridge Univ. Press, Cambridge, 2014, pp. 17–104. MR 3444231
- Laurent Fargues, Quelques résultats et conjectures concernant la courbe, Astérisque 369 (2015), 325–374 (French, with English and French summaries). MR 3379639
- Jean-Marc Fontaine, Presque $C_p$-représentations, Kazuya Kato’s fiftieth birthday, Doc. Math. Extra Vol. (2003), 285–385 (French, with English summary). MR 2046603
- Annette Huber, Mixed motives and their realization in derived categories, Lecture Notes in Mathematics, vol. 1604, Springer-Verlag, Berlin, 1995. MR 1439046
- Kiran S. Kedlaya, Slope filtrations revisited, Doc. Math. 10 (2005), 447–525. MR 2184462
- Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167 (2018), no. 18, 3455–3532 (French, with English and French summaries). MR 3881201, DOI https://doi.org/10.1215/00127094-2018-0034
- Jan Nekovář and Wiesława Nizioł, Syntomic cohomology and $p$-adic regulators for varieties over $p$-adic fields, with appendices by Laurent Berger and Frédéric Déglise, Algebra Number Theory 10 (2016), no. 8, 1695–1790. MR 3556797, DOI https://doi.org/10.2140/ant.2016.10.1695
- Bernadette Perrin-Riou, Représentations $p$-adiques ordinaires, with an appendix by Luc Illusie, Périodes $p$-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 185–220 (French). MR 1293973
- Jean-Pierre Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.) 76 (1999), vi+134 (English, with English and French summaries). MR 1779315
- Peter Scholze, $p$-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi 1 (2013), e1, 77. MR 3090230, DOI https://doi.org/10.1017/fmp.2013.1
Additional Information
Wiesława Nizioł
Affiliation:
UMPA, École Normale Supérieure de Lyon, 46, allée d’Italie, 69007 Lyon, France
Email:
wieslawa.niziol@ens-lyon.fr
Received by editor(s):
June 9, 2016
Received by editor(s) in revised form:
February 12, 2019, and April 9, 2019
Published electronically:
June 28, 2019
Additional Notes:
The author’s research was supported in part by the grant ANR-14-CE25.
Article copyright:
© Copyright 2019
University Press, Inc.