Lifting problem for minimally wild covers of Berkovich curves
Authors:
Uri Brezner and Michael Temkin
Journal:
J. Algebraic Geom. 29 (2020), 123-166
DOI:
https://doi.org/10.1090/jag/728
Published electronically:
September 13, 2019
MathSciNet review:
4028068
Full-text PDF
Abstract |
References |
Additional Information
Abstract: This work continues the study of residually wild morphisms $f\colon Y\to X$ of Berkovich curves initiated in [Adv. Math. 303 (2016), pp. 800-858]. The different function $\delta _f$ introduced in that work is the primary discrete invariant of such covers. When $f$ is not residually tame, it provides a non-trivial enhancement of the classical invariant of $f$ consisting of morphisms of reductions $\widetilde f\colon \widetilde Y\to \widetilde X$ and metric skeletons $\Gamma _f\colon \Gamma _Y\to \Gamma _X$. In this paper we interpret $\delta _f$ as the norm of the canonical trace section $\tau _f$ of the dualizing sheaf $\omega _f$ and introduce a finer reduction invariant $\widetilde \tau _f$, which is (loosely speaking) a section of $\omega _{\widetilde f}^{\operatorname {log}}$. Our main result generalizes a lifting theorem of Amini-Baker-Brugallé-Rabinoff from the case of residually tame morphism to the case of minimally residually wild morphisms. For such morphisms we describe all restrictions the datum $(\widetilde f,\Gamma _f,\delta |_{\Gamma _Y},\widetilde \tau _f)$ satisfies and prove that, conversely, any quadruple satisfying these restrictions can be lifted to a morphism of Berkovich curves.
References
- Omid Amini and Matthew Baker, Linear series on metrized complexes of algebraic curves, Math. Ann. 362 (2015), no. 1-2, 55–106. MR 3343870, DOI https://doi.org/10.1007/s00208-014-1093-8
- Omid Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff, Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, Res. Math. Sci. 2 (2015), Art. 7, 67. MR 3375652, DOI https://doi.org/10.1186/s40687-014-0019-0
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. 78 (1993), 5–161 (1994). MR 1259429
- Adina Cohen, Michael Temkin, and Dmitri Trushin, Morphisms of Berkovich curves and the different function, Adv. Math. 303 (2016), 800–858. MR 3552539, DOI https://doi.org/10.1016/j.aim.2016.08.029
- Tyler Foster, Dhruv Ranganathan, Mattia Talpo, and Martin Ulirsch, Logarithmic Picard groups, chip firing, and the combinatorial rank, Math. Z. 291 (2019), no. 1-2, 313–327. MR 3936072, DOI https://doi.org/10.1007/s00209-018-2085-2
- Yannick Henrio, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p-adiques formels, arXiv e-prints, https://arxiv.org/pdf/math /0011098.pdf, 2000.
- Michael Temkin, Stable modification of relative curves, J. Algebraic Geom. 19 (2010), no. 4, 603–677. MR 2669727, DOI https://doi.org/10.1090/S1056-3911-2010-00560-7
- Michael Temkin, Metrization of differential pluriforms on Berkovich analytic spaces, Nonarchimedean and tropical geometry, Simons Symp., Springer, [Cham], 2016, pp. 195–285. MR 3702313
- Michael Temkin, Metric uniformization of morphisms of Berkovich curves, Adv. Math. 317 (2017), 438–472. MR 3682674, DOI https://doi.org/10.1016/j.aim.2017.07.010
References
- Omid Amini and Matthew Baker, Linear series on metrized complexes of algebraic curves, Math. Ann. 362 (2015), no. 1-2, 55–106. MR 3343870, DOI https://doi.org/10.1007/s00208-014-1093-8
- Omid Amini, Matthew Baker, Erwan Brugallé, and Joseph Rabinoff, Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta, Res. Math. Sci. 2 (2015), Art. 7, 67. MR 3375652, DOI https://doi.org/10.1186/s40687-014-0019-0
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709
- Vladimir G. Berkovich, Étale cohomology for non-Archimedean analytic spaces, Inst. Hautes Études Sci. Publ. Math. (1993), no. 78, 5–161 (1994). MR 1259429 (95c:14017)
- Adina Cohen, Michael Temkin, and Dmitri Trushin, Morphisms of Berkovich curves and the different function, Adv. Math. 303 (2016), 800–858. MR 3552539, DOI https://doi.org/10.1016/j.aim.2016.08.029
- Tyler Foster, Dhruv Ranganathan, Mattia Talpo, and Martin Ulirsch, Logarithmic Picard groups, chip firing, and the combinatorial rank, Math. Z. 291 (2019), no. 1-2, 313–327. MR 3936072, DOI https://doi.org/10.1007/s00209-018-2085-2
- Yannick Henrio, Arbres de Hurwitz et automorphismes d’ordre p des disques et des couronnes p-adiques formels, arXiv e-prints, https://arxiv.org/pdf/math /0011098.pdf, 2000.
- Michael Temkin, Stable modification of relative curves, J. Algebraic Geom. 19 (2010), no. 4, 603–677. MR 2669727, DOI https://doi.org/10.1090/S1056-3911-2010-00560-7
- Michael Temkin, Metrization of differential pluriforms on Berkovich analytic spaces, Nonarchimedean and tropical geometry, Simons Symp., Springer, [Cham], 2016, pp. 195–285. MR 3702313
- Michael Temkin, Metric uniformization of morphisms of Berkovich curves, Adv. Math. 317 (2017), 438–472. MR 3682674, DOI https://doi.org/10.1016/j.aim.2017.07.010
Additional Information
Uri Brezner
Affiliation:
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Giv’at Ram, Jerusalem, 91904, Israel
Email:
uri.brezner@mail.huji.ac.il
Michael Temkin
Affiliation:
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Giv’at Ram, Jerusalem, 91904, Israel
MR Author ID:
332870
Email:
michael.temkin@mail.huji.ac.il
Received by editor(s):
February 14, 2018
Received by editor(s) in revised form:
June 30, 2018, and July 19, 2018
Published electronically:
September 13, 2019
Additional Notes:
This work was supported by the Israel Science Foundation (grant No. 1159/15)
Article copyright:
© Copyright 2019
University Press, Inc.