Distinguished cycles on varieties with motive of abelian type and the Section Property
Authors:
Lie Fu and Charles Vial
Journal:
J. Algebraic Geom. 29 (2020), 53-107
DOI:
https://doi.org/10.1090/jag/729
Published electronically:
September 20, 2019
MathSciNet review:
4028066
Full-text PDF
Abstract |
References |
Additional Information
Abstract: A remarkable result of Peter O’Sullivan asserts that the algebra epimorphism from the rational Chow ring of an abelian variety to its rational Chow ring modulo numerical equivalence admits a (canonical) section. Motivated by Beauville’s splitting principle, we formulate a conjectural Section Property which predicts that for smooth projective holomorphic symplectic varieties there exists such a section of algebra whose image contains all the Chern classes of the variety. In this paper, we investigate this property for (not necessarily symplectic) varieties with a Chow motive of abelian type. We introduce the notion of a symmetrically distinguished abelian motive and use it to provide a sufficient condition for a smooth projective variety to admit such a section. We then give a series of examples of varieties for which our theory works. For instance, we prove the existence of such a section for arbitrary products of varieties with Chow groups of finite rank, abelian varieties, hyperelliptic curves, Fermat cubic hypersurfaces, Hilbert schemes of points on an abelian surface or a Kummer surface or a K3 surface with Picard number at least 19, and generalized Kummer varieties. The latter cases provide evidence for the conjectural Section Property and exemplify the mantra that the motives of holomorphic symplectic varieties should behave as the motives of abelian varieties, as algebra objects.
References
- Giuseppe Ancona, Décomposition du motif d’un schéma abélien universel, Ph.D. thesis, Université Paris 13, 2012, Thèse de doctorat Mathématiques, p. 60.
- Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004 (French, with English and French summaries). MR 2115000
- Yves André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan$\dots $), Astérisque 299 (2005), Exp. No. 929, viii, 115–145 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167204
- Yves André and Bruno Kahn, Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002), 107–291 (French, with English summary). With an appendix by Peter O’Sullivan. MR 1956434
- A. Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 238–260 (French). MR 726428, DOI https://doi.org/10.1007/BFb0099965
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- Arnaud Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), no. 4, 647–651 (French). MR 826463, DOI https://doi.org/10.1007/BF01472135
- Arnaud Beauville, On the splitting of the Bloch-Beilinson filtration, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 38–53. MR 2187148
- Arnaud Beauville and Claire Voisin, On the Chow ring of a $K3$ surface, J. Algebraic Geom. 13 (2004), no. 3, 417–426. MR 2047674, DOI https://doi.org/10.1090/S1056-3911-04-00341-8
- Marcello Bernardara and Michele Bolognesi, Categorical representability and intermediate Jacobians of Fano threefolds, Derived categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 1–25. MR 3050698
- Spencer Bloch, Algebraic cycles and values of $L$-functions, J. Reine Angew. Math. 350 (1984), 94–108. MR 743535, DOI https://doi.org/10.1515/crll.1984.350.94
- G. Ceresa, $C$ is not algebraically equivalent to $C^{-}$ in its Jacobian, Ann. of Math. (2) 117 (1983), no. 2, 285–291. MR 690847, DOI https://doi.org/10.2307/2007078
- Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), no. 1, 39–90. MR 1616606, DOI https://doi.org/10.2140/pjm.1998.183.39
- Mark Andrea A. de Cataldo and Luca Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002), no. 2, 824–848. MR 1919155, DOI https://doi.org/10.1006/jabr.2001.9105
- Mark Andrea A. de Cataldo and Luca Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004), no. 2-3, 151–170. MR 2067464, DOI https://doi.org/10.4310/MRL.2004.v11.n2.a2
- Christopher Deninger and Jacob Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR 1133323
- Barbara Fantechi and Lothar Göttsche, The cohomology ring of the Hilbert scheme of $3$ points on a smooth projective variety, J. Reine Angew. Math. 439 (1993), 147–158. MR 1219698, DOI https://doi.org/10.1515/crll.1993.439.147
- Lie Fu, Beauville-Voisin conjecture for generalized Kummer varieties, Int. Math. Res. Not. IMRN 12 (2015), 3878–3898. MR 3356741, DOI https://doi.org/10.1093/imrn/rnu053
- Lie Fu and Zhiyu Tian, Motivic Hype-Kähler Resolution Conjecture: II. Hilbert schemes of K3 surfaces, preprint (2017).
- Lie Fu, Zhiyu Tian, and Charles Vial, Motivic hyper-Kähler resolution conjecture, I: generalized Kummer varieties, Geom. Topol. 23 (2019), no. 1, 427–492. MR 3921323, DOI https://doi.org/10.2140/gt.2019.23.427
- Lie Fu, Charles Vial, and Robert Laterveer, The generalized Franchetta conjecture for some hyper-Kähler varieties, J. Math. Pures Appl. (2019) online, DOI 10.1016/j.matpur.2019.01.018, arXiv:1708.02919 (2017).
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Bruno Harris, Homological versus algebraic equivalence in a Jacobian, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 4, i, 1157–1158. MR 689846, DOI https://doi.org/10.1073/pnas.80.4.1157
- Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113. MR 1664696, DOI https://doi.org/10.1007/s002220050280
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372
- Shun-Ichi Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173–201. MR 2107443, DOI https://doi.org/10.1007/s00208-004-0577-3
- Shun-ichi Kimura, Surjectivity of the cycle map for Chow motives, Motives and algebraic cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 157–165. MR 2562457
- Klaus Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), no. 1, 85–102. MR 1223225, DOI https://doi.org/10.1007/BF01244303
- Klaus Künnemann, On the Chow motive of an abelian scheme, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 189–205. MR 1265530
- Nikon Kurnosov, Andrey Soldatenkov, and Misha Verbitsky, Kuga-Satake construction and cohomology of hyperkähler manifolds, Adv. Math. 351 (2019), 275–295. MR 3952121, DOI https://doi.org/10.1016/j.aim.2019.04.060
- Robert Laterveer and Charles Vial, On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties, Canad. J. Math., 2019, DOI 10.4153/S0008414X19000191.
- James D. Lewis, A generalization of Mumford’s theorem. II, Illinois J. Math. 39 (1995), no. 2, 288–304. MR 1316539
- Matilde Marcolli and Gonçalo Tabuada, From exceptional collections to motivic decompositions via noncommutative motives, J. Reine Angew. Math. 701 (2015), 153–167. MR 3331729, DOI https://doi.org/10.1515/crelle-2013-0027
- Ben Moonen, On the Chow motive of an abelian scheme with non-trivial endomorphisms, J. Reine Angew. Math. 711 (2016), 75–109. MR 3456759, DOI https://doi.org/10.1515/crelle-2013-0115
- D. R. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, DOI https://doi.org/10.1007/BF01403093
- J. P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety. I. The general conjectures and some examples, Indag. Math. (N.S.) 4 (1993), no. 2, 177–188. MR 1225267, DOI https://doi.org/10.1016/0019-3577%2893%2990038-Z
- V. V. Nikulin, Finite groups of automorphisms of Kählerian $K3$ surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
- Peter O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011), 1–81. MR 2795752, DOI https://doi.org/10.1515/CRELLE.2011.025
- Noriyuki Otsubo, On the Abel-Jacobi maps of Fermat Jacobians, Math. Z. 270 (2012), no. 1-2, 423–444. MR 2875842, DOI https://doi.org/10.1007/s00209-010-0805-3
- Claudio Pedrini, On the finite dimensionality of a K3 surface, Manuscripta Math. 138 (2012), no. 1-2, 59–72. MR 2898747, DOI https://doi.org/10.1007/s00229-011-0483-4
- Ulrike Rieß, On the Chow ring of birational irreducible symplectic varieties, Manuscripta Math. 145 (2014), no. 3-4, 473–501. MR 3268859, DOI https://doi.org/10.1007/s00229-014-0698-2
- Ulrike Rieß, On Beauville’s conjectural weak splitting property, Int. Math. Res. Not. IMRN 20 (2016), 6133–6150. MR 3579961, DOI https://doi.org/10.1093/imrn/rnv315
- Mingmin Shen and Charles Vial, The Fourier transform for certain hyperkähler fourfolds, Mem. Amer. Math. Soc. 240 (2016), no. 1139, vii+163. MR 3460114, DOI https://doi.org/10.1090/memo/1139
- Mingmin Shen and Charles Vial, The motive of the Hilbert cube $X^{[3]}$, Forum Math. Sigma 4 (2016), Paper No. e30, 55. MR 3570075, DOI https://doi.org/10.1017/fms.2016.25
- Tetsuji Shioda and Toshiyuki Katsura, On Fermat varieties, Tohoku Math. J. (2) 31 (1979), no. 1, 97–115. MR 526513, DOI https://doi.org/10.2748/tmj/1178229881
- Mehdi Tavakol, Tautological classes on the moduli space of hyperelliptic curves with rational tails, J. Pure Appl. Algebra 222 (2018), no. 8, 2040–2062. MR 3771847, DOI https://doi.org/10.1016/j.jpaa.2017.08.019
- Charles Vial, Pure motives with representable Chow groups, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1191–1195 (English, with English and French summaries). MR 2738925, DOI https://doi.org/10.1016/j.crma.2010.10.017
- Charles Vial, On the motive of some hyperKähler varieties, J. Reine Angew. Math. 725 (2017), 235–247. MR 3630123, DOI https://doi.org/10.1515/crelle-2015-0008
- Claire Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 613–649. MR 2435839, DOI https://doi.org/10.4310/PAMQ.2008.v4.n3.a2
- Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044
- Claire Voisin, Some new results on modified diagonals, Geom. Topol. 19 (2015), no. 6, 3307–3343. MR 3447105, DOI https://doi.org/10.2140/gt.2015.19.3307
- Claire Voisin, Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, K3 surfaces and their moduli, Progr. Math., vol. 315, Birkhäuser/Springer, [Cham], 2016, pp. 365–399. MR 3524175, DOI https://doi.org/10.1007/978-3-319-29959-4_14
- Qizheng Yin, Finite-dimensionality and cycles on powers of $K3$ surfaces, Comment. Math. Helv. 90 (2015), no. 2, 503–511. MR 3351754, DOI https://doi.org/10.4171/CMH/362
References
- Giuseppe Ancona, Décomposition du motif d’un schéma abélien universel, Ph.D. thesis, Université Paris 13, 2012, Thèse de doctorat Mathématiques, p. 60.
- Yves André, Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses [Panoramas and Syntheses], vol. 17, Société Mathématique de France, Paris, 2004 (French, with English and French summaries). MR 2115000
- Yves André, Motifs de dimension finie (d’après S.-I. Kimura, P. O’Sullivan$\dots$), Astérisque 299 (2005), Exp. No. 929, viii, 115–145 (French, with French summary). Séminaire Bourbaki. Vol. 2003/2004. MR 2167204
- Yves André and Bruno Kahn, Nilpotence, radicaux et structures monoïdales, Rend. Sem. Mat. Univ. Padova 108 (2002), 107–291 (French, with English summary). With an appendix by Peter O’Sullivan. MR 1956434
- Arnaud Beauville, Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 238–260 (French). MR 726428, DOI https://doi.org/10.1007/BFb0099965
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- Arnaud Beauville, Sur l’anneau de Chow d’une variété abélienne, Math. Ann. 273 (1986), no. 4, 647–651 (French). MR 826463, DOI https://doi.org/10.1007/BF01472135
- Arnaud Beauville, On the splitting of the Bloch-Beilinson filtration, Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 344, Cambridge Univ. Press, Cambridge, 2007, pp. 38–53. MR 2187148
- Arnaud Beauville and Claire Voisin, On the Chow ring of a $K3$ surface, J. Algebraic Geom. 13 (2004), no. 3, 417–426. MR 2047674, DOI https://doi.org/10.1090/S1056-3911-04-00341-8
- Marcello Bernardara and Michele Bolognesi, Categorical representability and intermediate Jacobians of Fano threefolds, Derived categories in algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 1–25. MR 3050698
- Spencer Bloch, Algebraic cycles and values of $L$-functions, J. Reine Angew. Math. 350 (1984), 94–108. MR 743535, DOI https://doi.org/10.1515/crll.1984.350.94
- Guiseppe Ceresa, $C$ is not algebraically equivalent to $C^{-}$ in its Jacobian, Ann. of Math. (2) 117 (1983), no. 2, 285–291. MR 690847, DOI https://doi.org/10.2307/2007078
- Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998), no. 1, 39–90. MR 1616606, DOI https://doi.org/10.2140/pjm.1998.183.39
- Mark Andrea A. de Cataldo and Luca Migliorini, The Chow groups and the motive of the Hilbert scheme of points on a surface, J. Algebra 251 (2002), no. 2, 824–848. MR 1919155, DOI https://doi.org/10.1006/jabr.2001.9105
- Mark Andrea A. de Cataldo and Luca Migliorini, The Chow motive of semismall resolutions, Math. Res. Lett. 11 (2004), no. 2-3, 151–170. MR 2067464, DOI https://doi.org/10.4310/MRL.2004.v11.n2.a2
- Christopher Deninger and Jacob Murre, Motivic decomposition of abelian schemes and the Fourier transform, J. Reine Angew. Math. 422 (1991), 201–219. MR 1133323
- Barbara Fantechi and Lothar Göttsche, The cohomology ring of the Hilbert scheme of $3$ points on a smooth projective variety, J. Reine Angew. Math. 439 (1993), 147–158. MR 1219698, DOI https://doi.org/10.1515/crll.1993.439.147
- Lie Fu, Beauville-Voisin conjecture for generalized Kummer varieties, Int. Math. Res. Not. IMRN 12 (2015), 3878–3898. MR 3356741, DOI https://doi.org/10.1093/imrn/rnu053
- Lie Fu and Zhiyu Tian, Motivic Hype-Kähler Resolution Conjecture: II. Hilbert schemes of K3 surfaces, preprint (2017).
- Lie Fu, Zhiyu Tian, and Charles Vial, Motivic hyper-Kähler resolution conjecture, I: generalized Kummer varieties, Geom. Topol. 23 (2019), no. 1, 427–492. MR 3921323, DOI https://doi.org/10.2140/gt.2019.23.427
- Lie Fu, Charles Vial, and Robert Laterveer, The generalized Franchetta conjecture for some hyper-Kähler varieties, J. Math. Pures Appl. (2019) online, DOI 10.1016/j.matpur.2019.01.018, arXiv:1708.02919 (2017).
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
- Bruno Harris, Homological versus algebraic equivalence in a Jacobian, Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 4 i., 1157–1158. MR 689846, DOI https://doi.org/10.1073/pnas.80.4.1157
- Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113. MR 1664696, DOI https://doi.org/10.1007/s002220050280
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372
- Shun-Ichi Kimura, Chow groups are finite dimensional, in some sense, Math. Ann. 331 (2005), no. 1, 173–201. MR 2107443, DOI https://doi.org/10.1007/s00208-004-0577-3
- Shun-ichi Kimura, Surjectivity of the cycle map for Chow motives, Motives and algebraic cycles, Fields Inst. Commun., vol. 56, Amer. Math. Soc., Providence, RI, 2009, pp. 157–165. MR 2562457
- Klaus Künnemann, A Lefschetz decomposition for Chow motives of abelian schemes, Invent. Math. 113 (1993), no. 1, 85–102. MR 1223225, DOI https://doi.org/10.1007/BF01244303
- Klaus Künnemann, On the Chow motive of an abelian scheme, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 189–205. MR 1265530
- Nikon Kurnosov, Andrey Soldatenkov, and Misha Verbitsky, Kuga-Satake construction and cohomology of hyperkähler manifolds, Adv. Math. 351 (2019), 275–295. MR 3952121, DOI https://doi.org/10.1016/j.aim.2019.04.060
- Robert Laterveer and Charles Vial, On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties, Canad. J. Math., 2019, DOI 10.4153/S0008414X19000191.
- James D. Lewis, A generalization of Mumford’s theorem. II, Illinois J. Math. 39 (1995), no. 2, 288–304. MR 1316539
- Matilde Marcolli and Gonçalo Tabuada, From exceptional collections to motivic decompositions via noncommutative motives, J. Reine Angew. Math. 701 (2015), 153–167. MR 3331729, DOI https://doi.org/10.1515/crelle-2013-0027
- Ben Moonen, On the Chow motive of an abelian scheme with non-trivial endomorphisms, J. Reine Angew. Math. 711 (2016), 75–109. MR 3456759, DOI https://doi.org/10.1515/crelle-2013-0115
- David R. Morrison, On $K3$ surfaces with large Picard number, Invent. Math. 75 (1984), no. 1, 105–121. MR 728142, DOI https://doi.org/10.1007/BF01403093
- Jacob P. Murre, On a conjectural filtration on the Chow groups of an algebraic variety. I. The general conjectures and some examples, Indag. Math. (N.S.) 4 (1993), no. 2, 177–188. MR 1225267, DOI https://doi.org/10.1016/0019-3577%2893%2990038-Z
- Vyacheslav V. Nikulin, Finite groups of automorphisms of Kählerian $K3$ surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
- Peter O’Sullivan, Algebraic cycles on an abelian variety, J. Reine Angew. Math. 654 (2011), 1–81. MR 2795752, DOI https://doi.org/10.1515/CRELLE.2011.025
- Noriyuki Otsubo, On the Abel-Jacobi maps of Fermat Jacobians, Math. Z. 270 (2012), no. 1-2, 423–444. MR 2875842, DOI https://doi.org/10.1007/s00209-010-0805-3
- Claudio Pedrini, On the finite dimensionality of a K3 surface, Manuscripta Math. 138 (2012), no. 1-2, 59–72. MR 2898747, DOI https://doi.org/10.1007/s00229-011-0483-4
- Ulrike Rieß, On the Chow ring of birational irreducible symplectic varieties, Manuscripta Math. 145 (2014), no. 3-4, 473–501. MR 3268859, DOI https://doi.org/10.1007/s00229-014-0698-2
- Ulrike Rieß, On Beauville’s conjectural weak splitting property, Int. Math. Res. Not. IMRN 20 (2016), 6133–6150. MR 3579961, DOI https://doi.org/10.1093/imrn/rnv315
- Mingmin Shen and Charles Vial, The Fourier transform for certain hyperkähler fourfolds, Mem. Amer. Math. Soc. 240 (2016), no. 1139, vii+163. MR 3460114, DOI https://doi.org/10.1090/memo/1139
- Mingmin Shen and Charles Vial, The motive of the Hilbert cube $X^{[3]}$, Forum Math. Sigma 4 (2016), e30, 55. MR 3570075, DOI https://doi.org/10.1017/fms.2016.25
- Tetsuji Shioda and Toshiyuki Katsura, On Fermat varieties, Tôhoku Math. J. (2) 31 (1979), no. 1, 97–115. MR 526513, DOI https://doi.org/10.2748/tmj/1178229881
- Mehdi Tavakol, Tautological classes on the moduli space of hyperelliptic curves with rational tails, J. Pure Appl. Algebra 222 (2018), no. 8, 2040–2062. MR 3771847, DOI https://doi.org/10.1016/j.jpaa.2017.08.019
- Charles Vial, Pure motives with representable Chow groups, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1191–1195 (English, with English and French summaries). MR 2738925, DOI https://doi.org/10.1016/j.crma.2010.10.017
- Charles Vial, On the motive of some hyperKähler varieties, J. Reine Angew. Math. 725 (2017), 235–247. MR 3630123
- Claire Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure Appl. Math. Q. 4 (2008), no. 3, Special Issue: In honor of Fedor Bogomolov., 613–649. MR 2435839, DOI https://doi.org/10.4310/PAMQ.2008.v4.n3.a2
- Claire Voisin, Chow rings, decomposition of the diagonal, and the topology of families, Annals of Mathematics Studies, vol. 187, Princeton University Press, Princeton, NJ, 2014. MR 3186044
- Claire Voisin, Some new results on modified diagonals, Geom. Topol. 19 (2015), no. 6, 3307–3343. MR 3447105, DOI https://doi.org/10.2140/gt.2015.19.3307
- Claire Voisin, Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, K3 surfaces and their moduli, Progr. Math., vol. 315, Birkhäuser/Springer, [Cham], 2016, pp. 365–399. MR 3524175, DOI https://doi.org/10.1007/978-3-319-29959-4_14
- Qizheng Yin, Finite-dimensionality and cycles on powers of $K3$ surfaces, Comment. Math. Helv. 90 (2015), no. 2, 503–511. MR 3351754, DOI https://doi.org/10.4171/CMH/362
Additional Information
Lie Fu
Affiliation:
Institut Camille Jordan, Université Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France
MR Author ID:
1016534
Email:
fu@math.univ-lyon1.fr
Charles Vial
Affiliation:
Faculty of Mathematics, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
MR Author ID:
867800
Email:
vial@math.uni-bielefeld.de
Received by editor(s):
November 27, 2017
Received by editor(s) in revised form:
May 2, 2018, May 17, 2018, and July 17, 2018
Published electronically:
September 20, 2019
Additional Notes:
The first author was supported by the Agence Nationale de la Recherche (ANR) through ECOVA (ANR-15-CE40-0002), HodgeFun (ANR-16-CE40-0011), LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, and Projet Inter-Laboratoire 2017, 2018 by Fédération de Recherche en Mathématiques Rhône-Alpes/Auvergne CNRS 3490.
Article copyright:
© Copyright 2019
University Press, Inc.