Real fibered morphisms and Ulrich sheaves
Authors:
Mario Kummer and Eli Shamovich
Journal:
J. Algebraic Geom. 29 (2020), 167-198
DOI:
https://doi.org/10.1090/jag/735
Published electronically:
October 4, 2019
MathSciNet review:
4028069
Full-text PDF
Abstract |
References |
Additional Information
Abstract: In this paper, we define and study real fibered morphisms. Such morphisms arise in the study of real hyperbolic hypersurfaces in $\mathbb {P}^d$ and other hyperbolic varieties. We show that real fibered morphisms are intimately connected to Ulrich sheaves admitting positive definite symmetric bilinear forms.
References
- Lars V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100–134. MR 36318, DOI https://doi.org/10.1007/BF02567028
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
- Carlos Andradas, Ludwig Bröcker, and Jesús M. Ruiz, Constructible sets in real geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 33, Springer-Verlag, Berlin, 1996. MR 1393194
- Donu Arapura, Algebraic geometry over the complex numbers, Universitext, Springer, New York, 2012. MR 2895485
- Heinz H. Bauschke, Osman Güler, Adrian S. Lewis, and Hristo S. Sendov, Hyperbolic polynomials and convex analysis, Canad. J. Math. 53 (2001), no. 3, 470–488. MR 1827817, DOI https://doi.org/10.4153/CJM-2001-020-6
- Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479, DOI https://doi.org/10.1307/mmj/1030132707
- Eberhard Becker, Valuations and real places in the theory of formally real fields, Real algebraic geometry and quadratic forms (Rennes, 1981) Lecture Notes in Math., vol. 959, Springer, Berlin-New York, 1982, pp. 1–40. MR 683127
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509
- Petter Brändén, Obstructions to determinantal representability, Adv. Math. 226 (2011), no. 2, 1202–1212. MR 2737782, DOI https://doi.org/10.1016/j.aim.2010.08.003
- P. Brändén, Hyperbolic polynomials and the Marcus–Spielman–Srivastava theorem, preprint, arXiv:1412.0245, 2014.
- Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. MR 947472, DOI https://doi.org/10.7146/math.scand.a-12198
- E. Brugallé, G. Mikhalkin, J.-J. Risler, and K. Shaw, Nonexistence of torically maximal hypersurfaces, Algebra i Analiz 30 (2018), no. 1, 20–31; English transl., St. Petersburg Math. J. 30 (2019), no. 1, 15–23. MR 3790743, DOI https://doi.org/10.1090/S1061-0022-2018-01528-4
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Winfried Bruns, Tim Römer, and Attila Wiebe, Initial algebras of determinantal rings, Cohen-Macaulay and Ulrich ideals, Michigan Math. J. 53 (2005), no. 1, 71–81. MR 2125534, DOI https://doi.org/10.1307/mmj/1114021085
- Young-Bin Choe, James G. Oxley, Alan D. Sokal, and David G. Wagner, Homogeneous multivariate polynomials with the half-plane property, Adv. in Appl. Math. 32 (2004), no. 1-2, 88–187. Special issue on the Tutte polynomial. MR 2037144, DOI https://doi.org/10.1016/S0196-8858%2803%2900078-2
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
- Marc Coppens, The separating gonality of a separating real curve, Monatsh. Math. 170 (2013), no. 1, 1–10. MR 3032670, DOI https://doi.org/10.1007/s00605-012-0413-x
- Marc Coppens and Johannes Huisman, Pencils on real curves, Math. Nachr. 286 (2013), no. 8-9, 799–816. MR 3066402, DOI https://doi.org/10.1002/mana.201100196
- Jesús A. De Loera, Bernd Sturmfels, and Cynthia Vinzant, The central curve in linear programming, Found. Comput. Math. 12 (2012), no. 4, 509–540. MR 2946462, DOI https://doi.org/10.1007/s10208-012-9127-7
- David Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. A second course in commutative algebra and algebraic geometry. MR 2103875
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI https://doi.org/10.1090/S0002-9947-03-03291-4
- David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819
- David Eisenbud and Frank-Olaf Schreyer, Boij-Söderberg theory, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 35–48. MR 2810424, DOI https://doi.org/10.1007/978-3-642-19492-4_3
- David Eisenbud and Frank-Olaf Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537–579. With an appendix by Jerzy Weyman. MR 1969204, DOI https://doi.org/10.1090/S0894-0347-03-00423-5
- Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. MR 2183496
- Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv. 81 (2006), no. 4, 945–964 (French, with English and French summaries). MR 2271230, DOI https://doi.org/10.4171/CMH/82
- Lars Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1–62. MR 41336, DOI https://doi.org/10.1007/BF02395740
- Lars Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965. MR 0113978, DOI https://doi.org/10.1512/iumj.1959.8.58061
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. Schemes with examples and exercises. MR 2675155
- Osman Güler, Hyperbolic polynomials and interior point methods for convex programming, Math. Oper. Res. 22 (1997), no. 2, 350–377. MR 1450796, DOI https://doi.org/10.1287/moor.22.2.350
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- J. William Helton and Victor Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007), no. 5, 654–674. MR 2292953, DOI https://doi.org/10.1002/cpa.20155
- J. Herzog, B. Ulrich, and J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), no. 2-3, 187–202. MR 1117634, DOI https://doi.org/10.1016/0022-4049%2891%2990147-T
- Lars Hörmander, The analysis of linear partial differential operators. II, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Differential operators with constant coefficients; Reprint of the 1983 original. MR 2108588
- J. Huisman, On the geometry of algebraic curves having many real components, Rev. Mat. Complut. 14 (2001), no. 1, 83–92. MR 1851723, DOI https://doi.org/10.5209/rev_REMA.2001.v14.n1.17041
- Dmitry Kerner and Victor Vinnikov, Determinantal representations of singular hypersurfaces in $\Bbb {P}^n$, Adv. Math. 231 (2012), no. 3-4, 1619–1654. MR 2964618, DOI https://doi.org/10.1016/j.aim.2012.06.014
- Felix Klein, On Riemann’s theory of algebraic functions and their integrals. A supplement to the usual treatises, Dover Publications, Inc., New York, 1963. Translated from the German by Frances Hardcastle. MR 0158068
- Manfred Knebusch and Claus Scheiderer, Einführung in die reelle Algebra, Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course], vol. 63, Friedr. Vieweg & Sohn, Braunschweig, 1989 (German). MR 1029278
- Max-Albert Knus, Quadratic and Hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni. MR 1096299
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- M. G. Kreĭn and M. A. Naĭmark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, Linear and Multilinear Algebra 10 (1981), no. 4, 265–308. Translated from the Russian by O. Boshko and J. L. Howland. MR 638124, DOI https://doi.org/10.1080/03081088108817420
- Rajesh S. Kulkarni, Yusuf Mustopa, and Ian Shipman, Ulrich sheaves and higher-rank Brill-Noether theory, J. Algebra 474 (2017), 166–179. MR 3595789, DOI https://doi.org/10.1016/j.jalgebra.2016.10.006
- M. Kummer, From hyperbolic polynomials to real fibered morphisms. PhD thesis, Universität Konstanz, 2016.
- Mario Kummer, Determinantal representations and Bézoutians, Math. Z. 285 (2017), no. 1-2, 445–459. MR 3598819, DOI https://doi.org/10.1007/s00209-016-1715-9
- M. Kummer and C. Vinzant, The Chow form of a reciprocal linear space, preprint, arXiv:1610.04584, 2016, Michigan Math. J. (to appear).
- P. D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math. 11 (1958), 175–194. MR 98110, DOI https://doi.org/10.1002/cpa.3160110203
- A. S. Lewis, P. A. Parrilo, and M. V. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2495–2499. MR 2146191, DOI https://doi.org/10.1090/S0002-9939-05-07752-X
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. (2) 182 (2015), no. 1, 327–350. MR 3374963, DOI https://doi.org/10.4007/annals.2015.182.1.8
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959
- Mateusz Michałek, Bernd Sturmfels, Caroline Uhler, and Piotr Zwiernik, Exponential varieties, Proc. Lond. Math. Soc. (3) 112 (2016), no. 1, 27–56. MR 3458144, DOI https://doi.org/10.1112/plms/pdv066
- Grigory Mikhalkin, Amoebas of algebraic varieties and tropical geometry, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 257–300. MR 2102998, DOI https://doi.org/10.1007/0-306-48658-X_6
- Mikael Passare and Jean-Jacques Risler, On the curvature of the real amoeba, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 2011, pp. 129–134. MR 2931884
- P. Pedersen, M.-F. Roy, and A. Szpirglas, Counting real zeros in the multivariate case, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 203–224. MR 1230868, DOI https://doi.org/10.1007/978-1-4612-2752-6_15
- Alexander Prestel and Charles N. Delzell, Positive polynomials, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. From Hilbert’s 17th problem to real algebra. MR 1829790
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- James Renegar, Hyperbolic programs, and their derivative relaxations, Found. Comput. Math. 6 (2006), no. 1, 59–79. MR 2198215, DOI https://doi.org/10.1007/s10208-004-0136-z
- Raman Sanyal, Bernd Sturmfels, and Cynthia Vinzant, The entropic discriminant, Adv. Math. 244 (2013), 678–707. MR 3077886, DOI https://doi.org/10.1016/j.aim.2013.05.019
- E. Shamovich and V. Vinnikov, Livsic-type determinantal representations and hyperbolicity, Adv. Math. 329 (2018), 487–522. MR 3783420, DOI https://doi.org/10.1016/j.aim.2016.06.028
- Robert Silhol, Real algebraic surfaces, Lecture Notes in Mathematics, vol. 1392, Springer-Verlag, Berlin, 1989. MR 1015720
- A. Varchenko, Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math. 97 (1995), no. 3, 385–401. MR 1353281
- Victor Vinnikov, Complete description of determinantal representations of smooth irreducible curves, Linear Algebra Appl. 125 (1989), 103–140. MR 1024486, DOI https://doi.org/10.1016/0024-3795%2889%2990035-9
- Victor Vinnikov, LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future, Mathematical methods in systems, optimization, and control, Oper. Theory Adv. Appl., vol. 222, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 325–349. MR 2962792, DOI https://doi.org/10.1007/978-3-0348-0411-0_23
References
- Lars V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100–134. MR 0036318, DOI https://doi.org/10.1007/BF02567028
- Allen Altman and Steven Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin-New York, 1970. MR 0274461
- Carlos Andradas, Ludwig Bröcker, and Jesús M. Ruiz, Constructible sets in real geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 33, Springer-Verlag, Berlin, 1996. MR 1393194
- Donu Arapura, Algebraic geometry over the complex numbers, Universitext, Springer, New York, 2012. MR 2895485
- Heinz H. Bauschke, Osman Güler, Adrian S. Lewis, and Hristo S. Sendov, Hyperbolic polynomials and convex analysis, Canad. J. Math. 53 (2001), no. 3, 470–488. MR 1827817, DOI https://doi.org/10.4153/CJM-2001-020-6
- Arnaud Beauville, Determinantal hypersurfaces, with dedicated to William Fulton on the occasion of his 60th birthday, Michigan Math. J. 48 (2000), 39–64. MR 1786479, DOI https://doi.org/10.1307/mmj/1030132707
- Eberhard Becker, Valuations and real places in the theory of formally real fields, Real algebraic geometry and quadratic forms (Rennes, 1981) Lecture Notes in Math., vol. 959, Springer, Berlin-New York, 1982, pp. 1–40. MR 683127
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, with translated from the 1987 French original, revised by the authors, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. MR 1659509
- Petter Brändén, Obstructions to determinantal representability, Adv. Math. 226 (2011), no. 2, 1202–1212. MR 2737782, DOI https://doi.org/10.1016/j.aim.2010.08.003
- P. Brändén, Hyperbolic polynomials and the Marcus–Spielman–Srivastava theorem, preprint, arXiv:1412.0245, 2014.
- Joseph P. Brennan, Jürgen Herzog, and Bernd Ulrich, Maximally generated Cohen-Macaulay modules, Math. Scand. 61 (1987), no. 2, 181–203. MR 947472, DOI https://doi.org/10.7146/math.scand.a-12198
- E. Brugallé, G. Mikhalkin, J.-J. Risler, and K. Shaw, Nonexistence of torically maximal hypersurfaces, Algebra i Analiz 30 (2018), no. 1, 20–31. MR 3790743
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Winfried Bruns, Tim Römer, and Attila Wiebe, Initial algebras of determinantal rings, Cohen-Macaulay and Ulrich ideals, Michigan Math. J. 53 (2005), no. 1, 71–81. MR 2125534, DOI https://doi.org/10.1307/mmj/1114021085
- Young-Bin Choe, James G. Oxley, Alan D. Sokal, and David G. Wagner, Homogeneous multivariate polynomials with the half-plane property, with Special issue on the Tutte polynomial, Adv. in Appl. Math. 32 (2004), no. 1-2, 88–187. MR 2037144, DOI https://doi.org/10.1016/S0196-8858%2803%2900078-2
- Brian Conrad, Grothendieck duality and base change, Lecture Notes in Mathematics, vol. 1750, Springer-Verlag, Berlin, 2000. MR 1804902
- Marc Coppens, The separating gonality of a separating real curve, Monatsh. Math. 170 (2013), no. 1, 1–10. MR 3032670, DOI https://doi.org/10.1007/s00605-012-0413-x
- Marc Coppens and Johannes Huisman, Pencils on real curves, Math. Nachr. 286 (2013), no. 8-9, 799–816. MR 3066402, DOI https://doi.org/10.1002/mana.201100196
- Jesús A. De Loera, Bernd Sturmfels, and Cynthia Vinzant, The central curve in linear programming, Found. Comput. Math. 12 (2012), no. 4, 509–540. MR 2946462, DOI https://doi.org/10.1007/s10208-012-9127-7
- David Eisenbud, The geometry of syzygies: A second course in commutative algebra and algebraic geometry, Graduate Texts in Mathematics, vol. 229, Springer-Verlag, New York, 2005. MR 2103875
- David Eisenbud, Gunnar Fløystad, and Frank-Olaf Schreyer, Sheaf cohomology and free resolutions over exterior algebras, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4397–4426. MR 1990756, DOI https://doi.org/10.1090/S0002-9947-03-03291-4
- David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New York, 2000. MR 1730819
- David Eisenbud and Frank-Olaf Schreyer, Boij-Söderberg theory, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 35–48. MR 2810424, DOI https://doi.org/10.1007/978-3-642-19492-4_3
- David Eisenbud, Frank-Olaf Schreyer, and Jerzy Weyman, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537–579. MR 1969204, DOI https://doi.org/10.1090/S0894-0347-03-00423-5
- Antonio J. Engler and Alexander Prestel, Valued fields, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. MR 2183496
- Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes, Comment. Math. Helv. 81 (2006), no. 4, 945–964 (French, with English and French summaries). MR 2271230, DOI https://doi.org/10.4171/CMH/82
- Lars Gårding, Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1–62. MR 0041336, DOI https://doi.org/10.1007/BF02395740
- Lars Gȧrding, An inequality for hyperbolic polynomials, J. Math. Mech. 8 (1959), 957–965. MR 0113978
- Ulrich Görtz and Torsten Wedhorn, Algebraic geometry I: Schemes with examples and exercises, Advanced Lectures in Mathematics, Vieweg + Teubner, Wiesbaden, 2010. MR 2675155
- Osman Güler, Hyperbolic polynomials and interior point methods for convex programming, Math. Oper. Res. 22 (1997), no. 2, 350–377. MR 1450796, DOI https://doi.org/10.1287/moor.22.2.350
- Robin Hartshorne, Algebraic geometry, with Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- J. William Helton and Victor Vinnikov, Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007), no. 5, 654–674. MR 2292953, DOI https://doi.org/10.1002/cpa.20155
- J. Herzog, B. Ulrich, and J. Backelin, Linear maximal Cohen-Macaulay modules over strict complete intersections, J. Pure Appl. Algebra 71 (1991), no. 2-3, 187–202. MR 1117634, DOI https://doi.org/10.1016/0022-4049%2891%2990147-T
- Lars Hörmander, The analysis of linear partial differential operators. II, with Differential operators with constant coefficients, reprint of the 1983 original, Classics in Mathematics, Springer-Verlag, Berlin, 2005. MR 2108588
- J. Huisman, On the geometry of algebraic curves having many real components, Rev. Mat. Complut. 14 (2001), no. 1, 83–92. MR 1851723, DOI https://doi.org/10.5209/rev_REMA.2001.v14.n1.17041
- Dmitry Kerner and Victor Vinnikov, Determinantal representations of singular hypersurfaces in $\mathbb {P}^n$, Adv. Math. 231 (2012), no. 3-4, 1619–1654. MR 2964618, DOI https://doi.org/10.1016/j.aim.2012.06.014
- Felix Klein, On Riemann’s theory of algebraic functions and their integrals. A supplement to the usual treatises, translated from the German by Frances Hardcastle, Dover Publications, Inc., New York, 1963. MR 0158068
- Manfred Knebusch and Claus Scheiderer, Einführung in die reelle Algebra, Vieweg Studium: Aufbaukurs Mathematik [Vieweg Studies: Mathematics Course], vol. 63, Friedr. Vieweg & Sohn, Braunschweig, 1989 (German). MR 1029278
- Max-Albert Knus, Quadratic and Hermitian forms over rings, with with a foreword by I. Bertuccioni, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 294, Springer-Verlag, Berlin, 1991. MR 1096299
- János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
- M. G. Kreĭn and M. A. Naĭmark, The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations, with translated from the Russian by O. Boshko and J. L. Howland, Linear and Multilinear Algebra 10 (1981), no. 4, 265–308. MR 638124, DOI https://doi.org/10.1080/03081088108817420
- Rajesh S. Kulkarni, Yusuf Mustopa, and Ian Shipman, Ulrich sheaves and higher-rank Brill-Noether theory, J. Algebra 474 (2017), 166–179. MR 3595789, DOI https://doi.org/10.1016/j.jalgebra.2016.10.006
- M. Kummer, From hyperbolic polynomials to real fibered morphisms. PhD thesis, Universität Konstanz, 2016.
- Mario Kummer, Determinantal representations and Bézoutians, Math. Z. 285 (2017), no. 1-2, 445–459. MR 3598819, DOI https://doi.org/10.1007/s00209-016-1715-9
- M. Kummer and C. Vinzant, The Chow form of a reciprocal linear space, preprint, arXiv:1610.04584, 2016, Michigan Math. J. (to appear).
- P. D. Lax, Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math. 11 (1958), 175–194. MR 0098110, DOI https://doi.org/10.1002/cpa.3160110203
- A. S. Lewis, P. A. Parrilo, and M. V. Ramana, The Lax conjecture is true, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2495–2499. MR 2146191, DOI https://doi.org/10.1090/S0002-9939-05-07752-X
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families II: Mixed characteristic polynomials and the Kadison-Singer problem, Ann. of Math. (2) 182 (2015), no. 1, 327–350. MR 3374963, DOI https://doi.org/10.4007/annals.2015.182.1.8
- Murray Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, American Mathematical Society, Providence, RI, 2008. MR 2383959
- Mateusz Michałek, Bernd Sturmfels, Caroline Uhler, and Piotr Zwiernik, Exponential varieties, Proc. Lond. Math. Soc. (3) 112 (2016), no. 1, 27–56. MR 3458144, DOI https://doi.org/10.1112/plms/pdv066
- Grigory Mikhalkin, Amoebas of algebraic varieties and tropical geometry, Different faces of geometry, Int. Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 257–300. MR 2102998, DOI https://doi.org/10.1007/0-306-48658-X_6
- Mikael Passare and Jean-Jacques Risler, On the curvature of the real amoeba, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 2011, pp. 129–134. MR 2931884
- P. Pedersen, M.-F. Roy, and A. Szpirglas, Counting real zeros in the multivariate case, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 203–224. MR 1230868, DOI https://doi.org/10.1007/978-1-4612-2752-6_15
- Alexander Prestel and Charles N. Delzell, Positive polynomials: From Hilbert’s 17th problem to real algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. MR 1829790
- Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
- James Renegar, Hyperbolic programs, and their derivative relaxations, Found. Comput. Math. 6 (2006), no. 1, 59–79. MR 2198215, DOI https://doi.org/10.1007/s10208-004-0136-z
- Raman Sanyal, Bernd Sturmfels, and Cynthia Vinzant, The entropic discriminant, Adv. Math. 244 (2013), 678–707. MR 3077886, DOI https://doi.org/10.1016/j.aim.2013.05.019
- E. Shamovich and V. Vinnikov, Livsic-type determinantal representations and hyperbolicity, Adv. Math. 329 (2018), 487–522. MR 3783420, DOI https://doi.org/10.1016/j.aim.2016.06.028
- Robert Silhol, Real algebraic surfaces, Lecture Notes in Mathematics, vol. 1392, Springer-Verlag, Berlin, 1989. MR 1015720
- A. Varchenko, Critical points of the product of powers of linear functions and families of bases of singular vectors, Compositio Math. 97 (1995), no. 3, 385–401. MR 1353281
- Victor Vinnikov, Complete description of determinantal representations of smooth irreducible curves, Linear Algebra Appl. 125 (1989), 103–140. MR 1024486, DOI https://doi.org/10.1016/0024-3795%2889%2990035-9
- Victor Vinnikov, LMI representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future, Mathematical methods in systems, optimization, and control, Oper. Theory Adv. Appl., vol. 222, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 325–349. MR 2962792, DOI https://doi.org/10.1007/978-3-0348-0411-0_23
Additional Information
Mario Kummer
Affiliation:
Technische Universität Berlin, 10623 Berlin, Germany
Email:
kummer@tu-berlin.de
Eli Shamovich
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
MR Author ID:
1197796
ORCID:
setImmediate$0.6024528153333779$6
Email:
shamovic@bgu.ac.il
Received by editor(s):
February 20, 2018
Received by editor(s) in revised form:
September 8, 2018
Published electronically:
October 4, 2019
Additional Notes:
The first author was supported by the Studienstiftung des Deutschen Volkes. The research of the second author was partially carried out during visits to the Department of Mathematics and Statistics of the University of Konstanz, supported by the EDEN Erasmus Mundus program.
Article copyright:
© Copyright 2019
University Press, Inc.