ADE surfaces and their moduli
Authors:
Valery Alexeev and Alan Thompson
Journal:
J. Algebraic Geom. 30 (2021), 331-405
DOI:
https://doi.org/10.1090/jag/762
Published electronically:
November 19, 2020
MathSciNet review:
4233185
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We define a class of surfaces corresponding to the $ADE$ root lattices and construct compactifications of their moduli spaces as quotients of projective varieties for Coxeter fans, generalizing Losev-Manin spaces of curves. We exhibit modular families over these moduli spaces, which extend to families of stable pairs over the compactifications. One simple application is a geometric compactification of the moduli of rational elliptic surfaces that is a finite quotient of a projective toric variety.
References
- Valery Alexeev, Philip Engel, and Alan Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, arXiv:arXiv:1903.09742, 2019.
- Valery Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2) 155 (2002), no. 3, 611–708. MR 1923963, DOI https://doi.org/10.2307/3062130
- Valery Alexeev, Higher-dimensional analogues of stable curves, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 515–536. MR 2275608
- V. A. Alekseev and V. V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities of index $\leq 2$, involutions on $K3$ surfaces, and reflection groups in Lobachevskiĭ spaces, Lectures in mathematics and its applications, Vol. 2, No. 2 (Russian), Ross. Akad. Nauk, Inst. Mat. im. Steklova (MIAN), Moscow, 1988, pp. 51–150 (Russian, with Russian summary). MR 1787240
- V. A. Alekseev and V. V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities of index $\le 2$ and involutions on $K3$ surfaces, Dokl. Akad. Nauk SSSR 306 (1989), no. 3, 525–528. MR 1009466 (90h:14048)
- Valery Alexeev and Viacheslav V. Nikulin, Del Pezzo and $K3$ surfaces, MSJ Memoirs, vol. 15, Mathematical Society of Japan, Tokyo, 2006. MR 2227002
- V. I. Arnol′d, Normal forms of functions near degenerate critical points, the Weyl groups $A_{k},D_{k},E_{k}$ and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25 (Russian). MR 0356124
- Lionel Bayle and Arnaud Beauville, Birational involutions of ${\bf P}^2$, Asian J. Math. 4 (2000), no. 1, 11–17. Kodaira’s issue. MR 1802909, DOI https://doi.org/10.4310/AJM.2000.v4.n1.a2
- Victor Batyrev and Mark Blume, On generalisations of Losev-Manin moduli spaces for classical root systems, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1053–1084. MR 2918154, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a2
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. Translated from the 1975 and 1982 French originals by Andrew Pressley. MR 2109105
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027
- Michel Demazure, Henry Charles Pinkham, and Bernard Teissier (eds.), Séminaire sur les Singularités des Surfaces, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980 (French). Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977. MR 579026
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- Pavel Etingof, Alexei Oblomkov, and Eric Rains, Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, Adv. Math. 212 (2007), no. 2, 749–796. MR 2329319, DOI https://doi.org/10.1016/j.aim.2006.11.008
- Osamu Fujino, Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 2, 339–371. MR 2928144, DOI https://doi.org/10.2977/PRIMS/71
- Mark Gross, Paul Hacking, and Sean Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015), no. 2, 265–291. MR 3314827, DOI https://doi.org/10.1112/S0010437X14007611
- Paul Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213–257. MR 2078368, DOI https://doi.org/10.1215/S0012-7094-04-12421-2
- Paul Hacking, A compactification of the space of plane curves, arXiv:math/0104193, 2004.
- Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192. MR 2581246, DOI https://doi.org/10.1112/S0010437X09004370
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950
- János Kollár, Book on moduli of surfaces — ongoing project, 2015, available at https://web.math.princeton.edu/~kollar.
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI https://doi.org/10.1007/BF01389370
- A. Losev and Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000), 443–472. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786500, DOI https://doi.org/10.1307/mmj/1030132728
- Rick Miranda and Ulf Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986), no. 4, 537–558. MR 867347, DOI https://doi.org/10.1007/BF01160474
- Noboru Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci. Univ. Tokyo 14 (2007), no. 3, 293–498. MR 2372472
- Ulf Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990), no. 1, 1–47. MR 1069483, DOI https://doi.org/10.1007/BF02571223
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 7.5.1), 2017, http://www.sagemath.org
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI https://doi.org/10.1070/IM1993v040n01ABEH001862
- John R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), no. 2, 340–364. MR 1626860, DOI https://doi.org/10.1006/aima.1998.1736
- G. N. Tjurina, Resolution of singularities of flat deformations of double rational points, Funkcional. Anal. i Priložen. 4 (1970), no. 1, 77–83 (Russian). MR 0267129
References
- Valery Alexeev, Philip Engel, and Alan Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, arXiv:arXiv:1903.09742, 2019.
- Valery Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2) 155 (2002), no. 3, 611–708. MR 1923963, DOI https://doi.org/10.2307/3062130
- Valery Alexeev, Higher-dimensional analogues of stable curves, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 515–536. MR 2275608 (2008a:14051)
- V. A. Alekseev and V. V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities of index $\leq 2$, involutions on $K3$ surfaces, and reflection groups in Lobachevskiĭ spaces, Lectures in mathematics and its applications, Vol. 2, No. 2 (Russian), Ross. Akad. Nauk, Inst. Mat. im. Steklova (MIAN), Moscow, 1988, pp. 51–150 (Russian, with Russian summary). MR 1787240
- V. A. Alekseev and V. V. Nikulin, Classification of del Pezzo surfaces with log-terminal singularities of index $\le 2$ and involutions on $K3$ surfaces, Dokl. Akad. Nauk SSSR 306 (1989), no. 3, 525–528. MR 1009466 (90h:14048)
- Valery Alexeev and Viacheslav V. Nikulin, Del Pezzo and $K3$ surfaces, MSJ Memoirs, vol. 15, Mathematical Society of Japan, Tokyo, 2006. MR 2227002
- V. I. Arnol′d, Normal forms of functions near degenerate critical points, the Weyl groups $A_{k},D_{k},E_{k}$ and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25 (Russian). MR 0356124
- Lionel Bayle and Arnaud Beauville, Birational involutions of $\mathbf {P}^2$, Kodaira’s issue, Asian J. Math. 4 (2000), no. 1, 11–17. MR 1802909, DOI https://doi.org/10.4310/AJM.2000.v4.n1.a2
- Victor Batyrev and Mark Blume, On generalisations of Losev-Manin moduli spaces for classical root systems, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1053–1084. MR 2918154, DOI https://doi.org/10.4310/PAMQ.2011.v7.n4.a2
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 7–9, with translated from the 1975 and 1982 French originals by Andrew Pressley, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005. MR 2109105
- Igor V. Dolgachev, Classical algebraic geometry: A modern view, Cambridge University Press, Cambridge, 2012. MR 2964027
- Michel Demazure, Henry Charles Pinkham, and Bernard Teissier (eds.), Séminaire sur les Singularités des Surfaces, with held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980 (French). MR 579026
- E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S. 30(72) (1952), 349–462 (3 plates) (Russian). MR 0047629
- Pavel Etingof, Alexei Oblomkov, and Eric Rains, Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, Adv. Math. 212 (2007), no. 2, 749–796. MR 2329319, DOI https://doi.org/10.1016/j.aim.2006.11.008
- Osamu Fujino, Minimal model theory for log surfaces, Publ. Res. Inst. Math. Sci. 48 (2012), no. 2, 339–371. MR 2928144, DOI https://doi.org/10.2977/PRIMS/71
- Mark Gross, Paul Hacking, and Sean Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151 (2015), no. 2, 265–291. MR 3314827, DOI https://doi.org/10.1112/S0010437X14007611
- Paul Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), no. 2, 213–257. MR 2078368, DOI https://doi.org/10.1215/S0012-7094-04-12421-2
- Paul Hacking, A compactification of the space of plane curves, arXiv:math/0104193, 2004.
- Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192. MR 2581246, DOI https://doi.org/10.1112/S0010437X09004370
- János Kollár, Singularities of the minimal model program, with with a collaboration of Sándor Kovács, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. MR 3057950
- János Kollár, Book on moduli of surfaces — ongoing project, 2015, available at https://web.math.princeton.edu/~kollar.
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI https://doi.org/10.1007/BF01389370
- A. Losev and Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000), 443–472. MR 1786500, DOI https://doi.org/10.1307/mmj/1030132728
- Rick Miranda and Ulf Persson, On extremal rational elliptic surfaces, Math. Z. 193 (1986), no. 4, 537–558. MR 867347, DOI https://doi.org/10.1007/BF01160474
- Noboru Nakayama, Classification of log del Pezzo surfaces of index two, J. Math. Sci. Univ. Tokyo 14 (2007), no. 3, 293–498. MR 2372472
- Ulf Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990), no. 1, 1–47. MR 1069483, DOI https://doi.org/10.1007/BF02571223
- The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 7.5.1), 2017, http://www.sagemath.org
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI https://doi.org/10.1070/%5Cforcelinebreak%20IM1993v040n01ABEH001862
- John R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), no. 2, 340–364. MR 1626860, DOI https://doi.org/10.1006/aima.1998.1736
- G. N. Tjurina, Resolution of singularities of flat deformations of double rational points, Funkcional. Anal. i Priložen. 4 (1970), no. 1, 77–83 (Russian). MR 0267129
Additional Information
Valery Alexeev
Affiliation:
Department of Mathematics, University of Georgia, Athens, Georgia 30602
MR Author ID:
317826
Email:
valery@uga.edu
Alan Thompson
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
MR Author ID:
1025267
ORCID:
0000-0003-1400-0098
Email:
a.m.thompson@lboro.ac.uk
Received by editor(s):
January 7, 2019
Received by editor(s) in revised form:
October 6, 2019, and December 20, 2019
Published electronically:
November 19, 2020
Additional Notes:
The first author was partially supported by the NSF under DMS-1603604 and DMS-1902157.