Infinitesimal Chow dilogarithm
Author:
Si̇nan Ünver
Journal:
J. Algebraic Geom. 30 (2021), 529-571
DOI:
https://doi.org/10.1090/jag/746
Published electronically:
December 16, 2019
MathSciNet review:
4283551
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $C_{2}$ be a smooth and projective curve over the ring of dual numbers of a field $k.$ Given non-zero rational functions $f,g,$ and $h$ on $C_{2},$ we define an invariant $\rho (f\wedge g \wedge h) \in k.$ This is an analog of the real analytic Chow dilogarithm and the extension to non-linear cycles of the additive dilogarithm of [Algebra Number Theory 3 (2009), pp. 1–34]. Using this construction we state and prove an infinitesimal version of the strong reciprocity conjecture of Goncharov [J. Amer. Math. Soc. 18 (2005), pp. 1–60] with an explicit formula for the homotopy map. Also using $\rho ,$ we define an infinitesimal regulator on algebraic cycles of weight two which generalizes Park’s construction in the case of cycles with modulus [Amer. J. Math. 131 (2009), pp. 257–276].
References
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Spencer Bloch and Hélène Esnault, The additive dilogarithm, Doc. Math. Extra Vol. (2003), 131–155. Kazuya Kato’s fiftieth birthday. MR 2046597
- A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), no. 2, 197–318. MR 1348706, DOI 10.1006/aima.1995.1045
- Alexander Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999), no. 2, 569–618. MR 1649192, DOI 10.1090/S0894-0347-99-00293-3
- A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes, J. Amer. Math. Soc. 18 (2005), no. 1, 1–60. MR 2114816, DOI 10.1090/S0894-0347-04-00472-2
- Mark Green and Phillip Griffiths, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies, vol. 157, Princeton University Press, Princeton, NJ, 2005. MR 2110875, DOI 10.1515/9781400837175
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Société Mathématique de France, Paris, 2003 (French). Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61]; Directed by A. Grothendieck; With two papers by M. Raynaud; Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)]. MR 2017446
- Jinhyun Park, Regulators on additive higher Chow groups, Amer. J. Math. 131 (2009), no. 1, 257–276. MR 2488491, DOI 10.1353/ajm.0.0035
- Jinhyun Park and Sinan Ünver, Motivic cohomology of fat points in Milnor range, Doc. Math. 23 (2018), 759–798. MR 3861046
- D. Rudenko, Scissor congruence and Suslin reciprocity law, preprint, arXiv:1511.00520, 2015.
- A. A. Suslin, Reciprocity laws and the stable rank of rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 6, 1394–1429 (Russian). MR 567040
- Sinan Ünver, On the additive dilogarithm, Algebra Number Theory 3 (2009), no. 1, 1–34. MR 2491908, DOI 10.2140/ant.2009.3.1
References
- Spencer Bloch, Algebraic cycles and higher $K$-theory, Adv. in Math. 61 (1986), no. 3, 267–304. MR 852815, DOI 10.1016/0001-8708(86)90081-2
- Spencer Bloch and Hélène Esnault, The additive dilogarithm, Doc. Math. Extra Vol. (2003), 131–155. MR 2046597
- A. B. Goncharov, Geometry of configurations, polylogarithms, and motivic cohomology, Adv. Math. 114 (1995), no. 2, 197–318. MR 1348706, DOI 10.1006/aima.1995.1045
- Alexander Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999), no. 2, 569–618. MR 1649192, DOI 10.1090/S0894-0347-99-00293-3
- A. B. Goncharov, Polylogarithms, regulators, and Arakelov motivic complexes, J. Amer. Math. Soc. 18 (2005), no. 1, 1–60. MR 2114816, DOI 10.1090/S0894-0347-04-00472-2
- Mark Green and Phillip Griffiths, On the tangent space to the space of algebraic cycles on a smooth algebraic variety, Annals of Mathematics Studies, vol. 157, Princeton University Press, Princeton, NJ, 2005. MR 2110875, DOI 10.1515/9781400837175
- Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Séminaire de géométrie algébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], directed by A. Grothendieck, with two papers by M. Raynaud, updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)], Société Mathématique de France, Paris, 2003 (French). MR 2017446
- Jinhyun Park, Regulators on additive higher Chow groups, Amer. J. Math. 131 (2009), no. 1, 257–276. MR 2488491, DOI 10.1353/ajm.0.0035
- Jinhyun Park and Sinan Ünver, Motivic cohomology of fat points in Milnor range, Doc. Math. 23 (2018), 759–798. MR 3861046
- D. Rudenko, Scissor congruence and Suslin reciprocity law, preprint, arXiv:1511.00520, 2015.
- A. A. Suslin, Reciprocity laws and the stable rank of rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 6, 1394–1429 (Russian). MR 567040
- Sinan Ünver, On the additive dilogarithm, Algebra Number Theory 3 (2009), no. 1, 1–34. MR 2491908, DOI 10.2140/ant.2009.3.1
Additional Information
Si̇nan Ünver
Affiliation:
Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450, Istanbul, Turkey; and Department of Mathematics, Freie Universität Berlin, Arnimallee 3, 14195, Berlin, Germany
Email:
sunver@ku.edu.tr
Received by editor(s):
April 10, 2019
Published electronically:
December 16, 2019
Article copyright:
© Copyright 2019
University Press, Inc.