Notions of numerical Iitaka dimension do not coincide
Author:
John Lesieutre
Journal:
J. Algebraic Geom. 31 (2022), 113-126
DOI:
https://doi.org/10.1090/jag/763
Published electronically:
February 2, 2021
MathSciNet review:
4372409
Full-text PDF
Abstract |
References |
Additional Information
Abstract: Let $X$ be a smooth projective variety. The Iitaka dimension of a divisor $D$ is an important invariant, but it does not only depend on the numerical class of $D$. However, there are several definitions of “numerical Iitaka dimension”, depending only on the numerical class. In this note, we show that there exists a pseuodoeffective $\mathbb {R}$-divisor for which these invariants take different values. The key is the construction of an example of a pseudoeffective $\mathbb {R}$-divisor $D_+$ for which $h^0(X,\left \lfloor {m D_+}\right \rfloor +A)$ is bounded above and below by multiples of $m^{3/2}$ for any sufficiently ample $A$.
References
- Garrett Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly 74 (1967), 274–276. MR 214605, DOI 10.2307/2316020
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308. MR 2475816, DOI 10.1090/S1056-3911-08-00490-6
- Paolo Cascini, Christopher Hacon, Mircea Mustaţă, and Karl Schwede, On the numerical dimension of pseudo-effective divisors in positive characteristic, Amer. J. Math. 136 (2014), no. 6, 1609–1628. MR 3282982, DOI 10.1353/ajm.2014.0047
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Thomas Eckl, Numerical analogues of the Kodaira dimension and the abundance conjecture, Manuscripta Math. 150 (2016), no. 3-4, 337–356. MR 3514733, DOI 10.1007/s00229-015-0815-x
- Osamu Fujino, On subadditivity of the logarithmic Kodaira dimension, J. Math. Soc. Japan 69 (2017), no. 4, 1565–1581. MR 3715816, DOI 10.2969/jmsj/06941565
- Yujiro Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), no. 2, 229–246. MR 1161091, DOI 10.1007/BF02100604
- Yujiro Kawamata, On the abundance theorem in the case of numerical Kodaira dimension zero, Amer. J. Math. 135 (2013), no. 1, 115–124. MR 3022959, DOI 10.1353/ajm.2013.0009
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Brian Lehmann, Comparing numerical dimensions, Algebra Number Theory 7 (2013), no. 5, 1065–1100. MR 3101072, DOI 10.2140/ant.2013.7.1065
- Nicholas McCleerey, Volume of perturbations of pseudoeffective classes, Pure Appl. Math. Q. 14 (2018), no. 3-4, 607–616.
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Keiji Oguiso, A remark on dynamical degrees of automorphisms of hyperkähler manifolds, Manuscripta Math. 130 (2009), no. 1, 101–111. MR 2533769, DOI 10.1007/s00229-009-0271-6
- Keiji Oguiso, Automorphism groups of Calabi-Yau manifolds of Picard number 2, J. Algebraic Geom. 23 (2014), no. 4, 775–795. MR 3263669, DOI 10.1090/S1056-3911-2014-00642-1
References
- Garrett Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly 74 (1967), 274–276. MR 214605, DOI 10.2307/2316020
- Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201–248. MR 3019449, DOI 10.1090/S1056-3911-2012-00574-8
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308. MR 2475816, DOI 10.1090/S1056-3911-08-00490-6
- Paolo Cascini, Christopher Hacon, Mircea Mustaţă, and Karl Schwede, On the numerical dimension of pseudo-effective divisors in positive characteristic, Amer. J. Math. 136 (2014), no. 6, 1609–1628. MR 3282982, DOI 10.1353/ajm.2014.0047
- Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644 (French, with English summary). MR 2180409, DOI 10.4007/annals.2005.161.1637
- Thomas Eckl, Numerical analogues of the Kodaira dimension and the abundance conjecture, Manuscripta Math. 150 (2016), no. 3-4, 337–356. MR 3514733, DOI 10.1007/s00229-015-0815-x
- Osamu Fujino, On subadditivity of the logarithmic Kodaira dimension, J. Math. Soc. Japan 69 (2017), no. 4, 1565–1581. MR 3715816, DOI 10.2969/jmsj/06941565
- Yujiro Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), no. 2, 229–246. MR 1161091, DOI 10.1007/BF02100604
- Yujiro Kawamata, On the abundance theorem in the case of numerical Kodaira dimension zero, Amer. J. Math. 135 (2013), no. 1, 115–124. MR 3022959, DOI 10.1353/ajm.2013.0009
- Robert Lazarsfeld, Positivity in algebraic geometry. I: Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Brian Lehmann, Comparing numerical dimensions, Algebra Number Theory 7 (2013), no. 5, 1065–1100. MR 3101072, DOI 10.2140/ant.2013.7.1065
- Nicholas McCleerey, Volume of perturbations of pseudoeffective classes, Pure Appl. Math. Q. 14 (2018), no. 3-4, 607–616.
- Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
- Keiji Oguiso, A remark on dynamical degrees of automorphisms of hyperkähler manifolds, Manuscripta Math. 130 (2009), no. 1, 101–111. MR 2533769, DOI 10.1007/s00229-009-0271-6
- Keiji Oguiso, Automorphism groups of Calabi–Yau manifolds of Picard number 2, J. Algebraic Geom. 23 (2014), no. 4, 775–795. MR 3263669, DOI 10.1090/S1056-3911-2014-00642-1
Additional Information
John Lesieutre
Affiliation:
The Pennsylvania State University, 204 McAllister Building, University Park, Pennsylvania 16801
Email:
jdl@psu.edu
Received by editor(s):
June 5, 2019
Received by editor(s) in revised form:
January 16, 2020
Published electronically:
February 2, 2021
Additional Notes:
This work was supported by NSF Grant DMS-1700898/DMS-1912476.
Article copyright:
© Copyright 2021
University Press, Inc.