Scattering diagrams, stability conditions, and coherent sheaves on $\mathbb {P}^2$
Author:
Pierrick Bousseau
Journal:
J. Algebraic Geom. 31 (2022), 593-686
DOI:
https://doi.org/10.1090/jag/795
Published electronically:
June 24, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
We show that a purely algebraic structure, a two-dimensional scattering diagram, describes a large part of the wall-crossing behavior of moduli spaces of Bridgeland semistable objects in the derived category of coherent sheaves on $\mathbb {P}^2$. This gives a new algorithm computing the Hodge numbers of the intersection cohomology of the classical moduli spaces of Gieseker semistable sheaves on $\mathbb {P}^2$, or equivalently the refined Donaldson-Thomas invariants for compactly supported sheaves on local $\mathbb {P}^2$.
As applications, we prove that the intersection cohomology of moduli spaces of Gieseker semistable sheaves on $\mathbb {P}^2$ is Hodge-Tate, and we give the first non-trivial numerical checks of the general $\chi$-independence conjecture for refined Donaldson-Thomas invariants of one-dimensional sheaves on local $\mathbb {P}^2$.
References
- Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17. MR 3007265, DOI 10.3842/SIGMA.2012.094
- Sergei Alexandrov and Boris Pioline, Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys. 23 (2019), no. 3, 627–699. MR 4049073, DOI 10.4310/ATMP.2019.v23.n3.a2
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. With an appendix by Max Lieblich. MR 2998828, DOI 10.4171/JEMS/354
- Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $\Bbb {P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580–626. MR 3010070, DOI 10.1016/j.aim.2012.11.018
- H. Argüz and P. Bousseau, The flow tree formula for Donaldson-Thomas invariants of quivers with potentials, Preprint, arXiv:2102.11200, 2021.
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118, DOI 10.1215/00127094-1444249
- Arnaud Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 37–40 (French). MR 1351502
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Aaron Bertram, Cristian Martinez, and Jie Wang, The birational geometry of moduli spaces of sheaves on the projective plane, Geom. Dedicata 173 (2014), 37–64. MR 3275289, DOI 10.1007/s10711-013-9927-1
- Pierrick Bousseau, The quantum tropical vertex, Geom. Topol. 24 (2020), no. 3, 1297–1379. MR 4157555, DOI 10.2140/gt.2020.24.1297
- Pierrick Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1–79. MR 3904449, DOI 10.1007/s00222-018-0823-z
- P. Bousseau A proof of N. Takahashi’s conjecture for $(PP^2,E)$ and a refined sheaves/Gromov–Witten correspondence arXiv:1909.02992, 2019.
- Pierrick Bousseau, Honglu Fan, Shuai Guo, and Longting Wu, Holomorphic anomaly equation for $(\Bbb P^2,E)$ and the Nekrasov-Shatashvili limit of local $\Bbb P^2$, Forum Math. Pi 9 (2021), Paper No. e3, 57. MR 4254953, DOI 10.1017/fmp.2021.3
- Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, DOI 10.4007/annals.2007.166.317
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, DOI 10.1215/S0012-7094-08-14122-5
- Tom Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (2012), no. 1, 102–138. MR 2854172, DOI 10.1016/j.aim.2011.09.003
- Tom Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), no. 5, 523–561. MR 3710055, DOI 10.14231/2017-027
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, Adv. Math. 338 (2018), 41–92. MR 3861701, DOI 10.1016/j.aim.2018.08.013
- M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf, 2010.
- Mark Andrea A. de Cataldo and Luca Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633. MR 2525735, DOI 10.1090/S0273-0979-09-01260-9
- Man-Wai Cheung and Travis Mandel, Donaldson-Thomas invariants from tropical disks, Selecta Math. (N.S.) 26 (2020), no. 4, Paper No. 57, 46. MR 4131036, DOI 10.1007/s00029-020-00580-8
- Jinwon Choi and Kiryong Chung, The geometry of the moduli space of one-dimensional sheaves, Sci. China Math. 58 (2015), no. 3, 487–500. MR 3319919, DOI 10.1007/s11425-014-4889-9
- Jinwon Choi and Kiryong Chung, Moduli spaces of $\alpha$-stable pairs and wall-crossing on $\Bbb {P}^2$, J. Math. Soc. Japan 68 (2016), no. 2, 685–709. MR 3488141, DOI 10.2969/jmsj/06820685
- Jinwon Choi, Michel van Garrel, Sheldon Katz, and Nobuyoshi Takahashi, Log BPS numbers of log Calabi-Yau surfaces, Trans. Amer. Math. Soc. 374 (2021), no. 1, 687–732. MR 4188197, DOI 10.1090/tran/8234
- Jinwon Choi and Mario Maican, Torus action on the moduli spaces of torsion plane sheaves of multiplicity four, J. Geom. Phys. 83 (2014), 18–35. MR 3217411, DOI 10.1016/j.geomphys.2014.05.005
- Izzet Coskun and Jack Huizenga, Interpolation, Bridgeland stability and monomial schemes in the plane, J. Math. Pures Appl. (9) 102 (2014), no. 5, 930–971 (English, with English and French summaries). MR 3271294, DOI 10.1016/j.matpur.2014.02.010
- Izzet Coskun and Jack Huizenga, The birational geometry of the moduli spaces of sheaves on $\Bbb P^2$, Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, pp. 114–155. MR 3381441
- Izzet Coskun and Jack Huizenga, The ample cone of moduli spaces of sheaves on the plane, Algebr. Geom. 3 (2016), no. 1, 106–136. MR 3455422, DOI 10.14231/AG-2016-005
- Izzet Coskun, Jack Huizenga, and Matthew Woolf, The effective cone of the moduli space of sheaves on the plane, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1421–1467. MR 3635357, DOI 10.4171/JEMS/696
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551, DOI 10.1007/BF02684692
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552, DOI 10.1007/BF02685881
- Frederik Denef, Supergravity flows and D-brane stability, J. High Energy Phys. 8 (2000), Paper 50, 40. MR 1792870, DOI 10.1088/1126-6708/2000/08/050
- Michael R. Douglas, Bartomeu Fiol, and Christian Römelsberger, The spectrum of BPS branes on a noncompact Calabi-Yau, J. High Energy Phys. 9 (2005), 057, 40. MR 2174156, DOI 10.1088/1126-6708/2005/09/057
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur $\textbf {P}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365, DOI 10.24033/asens.1489
- Jean-Marc Drézet and Mario Maican, On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics, Geom. Dedicata 152 (2011), 17–49. MR 2795234, DOI 10.1007/s10711-010-9544-1
- J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur $\textbf {P}_2(\textbf {C})$, Math. Ann. 275 (1986), no. 1, 25–48 (French). MR 849052, DOI 10.1007/BF01458581
- J.-M. Drézet. Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\textbf {P}_2(\textbf {C})$, J. Reine Angew. Math., 380 (1987), 14–58.
- Richard Eager, Sam Alexandre Selmani, and Johannes Walcher, Exponential networks and representations of quivers, J. High Energy Phys. 8 (2017), 063, front matter+67. MR 3697419, DOI 10.1007/jhep08(2017)063
- Geir Ellingsrud and Stein Arild Strømme, Towards the Chow ring of the Hilbert scheme of $\textbf {P}^2$, J. Reine Angew. Math. 441 (1993), 33–44. MR 1228610
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013), no. 7, 1643–1731. MR 3115984, DOI 10.1007/s00023-013-0239-7
- V. Ginzburg, Calabi-Yau algebras, Preprint, arXiv:math/0612139, 2006.
- Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, DOI 10.1016/0040-9383(80)90003-8
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), no. 1, 115–130. MR 885779, DOI 10.1215/S0012-7094-87-05409-3
- T. Gräfnitz, Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs, 31 (2022), no.4; arXiv:2005.14018, 2020.
- Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011. MR 2722115, DOI 10.1090/cbms/114
- Mark Gross, Rahul Pandharipande, and Bernd Siebert, The tropical vertex, Duke Math. J. 153 (2010), no. 2, 297–362. MR 2667135, DOI 10.1215/00127094-2010-025
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- Paul Hacking, Exceptional bundles associated to degenerations of surfaces, Duke Math. J. 162 (2013), no. 6, 1171–1202. MR 3053568, DOI 10.1215/00127094-2147532
- Min-xin Huang and Albrecht Klemm, Direct integration for general $\Omega$ backgrounds, Adv. Theor. Math. Phys. 16 (2012), no. 3, 805–849. MR 3024275, DOI 10.4310/ATMP.2012.v16.n3.a2
- Jack Huizenga, Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles, J. Algebraic Geom. 25 (2016), no. 1, 19–75. MR 3419956, DOI 10.1090/jag/652
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168, DOI 10.1017/CBO9780511711985
- Dominic Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635–706. MR 2303235, DOI 10.1016/j.aim.2006.07.006
- Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, DOI 10.1093/qmath/ham019
- Dominic Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008), no. 1, 125–204. MR 2357325, DOI 10.1016/j.aim.2007.06.011
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI 10.1090/S0065-9266-2011-00630-1
- Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), no. 3, 2118–2168. MR 2739775, DOI 10.1016/j.aim.2010.09.019
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR 1315461, DOI 10.1093/qmath/45.4.515
- Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385. MR 2181810, DOI 10.1007/0-8176-4467-9_{9}
- M. Kontsevich and Y. Soibelman. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435, 2008.
- Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153, DOI 10.4310/CNTP.2011.v5.n2.a1
- Maxim Kontsevich and Yan Soibelman, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital., vol. 15, Springer, Cham, 2014, pp. 197–308. MR 3330788, DOI 10.1007/978-3-319-06514-4_{6}
- J. Le Potier, Faisceaux semi-stables de dimension $1$ sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993), no. 7-8, 635–678 (French). MR 1263210
- Chunyi Li and Xiaolei Zhao, The minimal model program for deformations of Hilbert schemes of points on the projective plane, Algebr. Geom. 5 (2018), no. 3, 328–358. MR 3800356, DOI 10.14231/AG-2018-010
- Chunyi Li and Xiaolei Zhao, Birational models of moduli spaces of coherent sheaves on the projective plane, Geom. Topol. 23 (2019), no. 1, 347–426. MR 3921322, DOI 10.2140/gt.2019.23.347
- Chunyi Li and Xiaolei Zhao, Smoothness and Poisson structures of Bridgeland moduli spaces on Poisson surfaces, Math. Z. 291 (2019), no. 1-2, 437–447. MR 3936077, DOI 10.1007/s00209-018-2090-5
- Emanuele Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672. MR 2335991, DOI 10.4310/MRL.2007.v14.n4.a10
- Mario Maican, On the moduli spaces of semi-stable plane sheaves of dimension one and multiplicity five, Illinois J. Math. 55 (2011), no. 4, 1467–1532 (2013). MR 3082879
- Mario Maican, The classification of semistable plane sheaves supported on sextic curves, Kyoto J. Math. 53 (2013), no. 4, 739–786. MR 3160600, DOI 10.1215/21562261-2366086
- Mario Maican, The homology groups of certain moduli spaces of plane sheaves, Internat. J. Math. 24 (2013), no. 12, 1350098, 42. MR 3152206, DOI 10.1142/S0129167X13500985
- T. Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, Preprint, arXiv:1503.06183, 2015.
- Jan Manschot, The Betti numbers of the moduli space of stable sheaves of rank 3 on $\Bbb P^2$, Lett. Math. Phys. 98 (2011), no. 1, 65–78. MR 2836429, DOI 10.1007/s11005-011-0490-0
- Jan Manschot, BPS invariants of semi-stable sheaves on rational surfaces, Lett. Math. Phys. 103 (2013), no. 8, 895–918. MR 3063951, DOI 10.1007/s11005-013-0624-7
- Jan Manschot, Sheaves on $\Bbb P^2$ and generalized Appell functions, Adv. Theor. Math. Phys. 21 (2017), no. 3, 655–681. MR 3695800, DOI 10.4310/ATMP.2017.v21.n3.a3
- Jan Manschot and Sergey Mozgovoy, Intersection cohomology of moduli spaces of sheaves on surfaces, Selecta Math. (N.S.) 24 (2018), no. 5, 3889–3926. MR 3874687, DOI 10.1007/s00029-018-0431-1
- Eyal Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622–646. MR 2304330, DOI 10.1016/j.aim.2006.03.006
- Cristian Martinez, Duality, Bridgeland wall-crossing and flips of secant varieties, Internat. J. Math. 28 (2017), no. 2, 1750011, 40. MR 3615584, DOI 10.1142/S0129167X17500112
- D. Maulik and J. Shen, Cohomological $\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Preprint, arXiv:2012.06627, 2020.
- S. Meinhardt, Donaldson-Thomas invariants vs. intersection cohomology for categories of homological dimension one, Preprint, arXiv:1512.03343, 2015.
- Sven Meinhardt and Markus Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019), 143–178. MR 4000572, DOI 10.1515/crelle-2017-0010
- Andrei Mikhailov, Nikita Nekrasov, and Savdeep Sethi, Geometric realizations of BPS states in $N=2$ theories, Nuclear Phys. B 531 (1998), no. 1-3, 345–362. MR 1657861, DOI 10.1016/S0550-3213(98)80001-1
- Ryo Ohkawa, Moduli of Bridgeland semistable objects on $\textbf {P}^2$, Kodai Math. J. 33 (2010), no. 2, 329–366. MR 2681544, DOI 10.2996/kmj/1278076346
- Thomas Prince, The tropical superpotential for $\Bbb P^2$, Algebr. Geom. 7 (2020), no. 1, 30–58. MR 4038403, DOI 10.14231/ag-2020-002
- A. N. Rudakov, Markov numbers and exceptional bundles on $\textbf {P}^2$, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 100–112, 240 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 1, 99–112. MR 936525, DOI 10.1070/IM1989v032n01ABEH000738
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Y. Shi, Orientation data for local $\mathbb {P}^2$, Preprint, arXiv:1809.01776, 2018.
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- Nobuyoshi Takahashi, Log mirror symmetry and local mirror symmetry, Comm. Math. Phys. 220 (2001), no. 2, 293–299. MR 1844627, DOI 10.1007/PL00005567
- Yukinobu Toda, Stability conditions and curve counting invariants on Calabi-Yau 3-folds, Kyoto J. Math. 52 (2012), no. 1, 1–50. MR 2892766, DOI 10.1215/21562261-1503745
- B. Toën. Grothendieck rings of Artin n-stacks, arXiv:math/0509098, 2005.
- M. Woolf. Nef and effective cones on the moduli space of torsion sheaves on the projective plane, arXiv:1305.1465, 2013.
- K\B{o}ta Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on $\mathbf P^2$, J. Reine Angew. Math. 453 (1994), 193–220. MR 1285785, DOI 10.1515/crll.1994.453.193
- K\B{o}ta Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on a ruled surface, Math. Ann. 302 (1995), no. 3, 519–540. MR 1339925, DOI 10.1007/BF01444506
- Yao Yuan, Moduli spaces of semistable sheaves of dimension 1 on $\Bbb P^2$, Pure Appl. Math. Q. 10 (2014), no. 4, 723–766. MR 3324766, DOI 10.4310/PAMQ.2014.v10.n4.a5
References
- Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17. MR 3007265, DOI 10.3842/SIGMA.2012.094
- Sergei Alexandrov and Boris Pioline, Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys. 23 (2019), no. 3, 627–699. MR 4049073, DOI 10.4310/ATMP.2019.v23.n3.a2
- Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1–38. With an appendix by Max Lieblich. MR 2998828, DOI 10.4171/JEMS/354
- Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $\mathbb {P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580–626. MR 3010070, DOI 10.1016/j.aim.2012.11.018
- H. Argüz and P. Bousseau, The flow tree formula for Donaldson-Thomas invariants of quivers with potentials, Preprint, arXiv:2102.11200, 2021.
- Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263–322. MR 2852118, DOI 10.1215/00127094-1444249
- Arnaud Beauville, Sur la cohomologie de certains espaces de modules de fibrés vectoriels, Geometry and analysis (Bombay, 1992) Tata Inst. Fund. Res., Bombay, 1995, pp. 37–40 (French). MR 1351502
- A. A. Beĭlinson, Coherent sheaves on ${\mathbf {P}}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Aaron Bertram, Cristian Martinez, and Jie Wang, The birational geometry of moduli spaces of sheaves on the projective plane, Geom. Dedicata 173 (2014), 37–64. MR 3275289, DOI 10.1007/s10711-013-9927-1
- Pierrick Bousseau, The quantum tropical vertex, Geom. Topol. 24 (2020), no. 3, 1297–1379. MR 4157555, DOI 10.2140/gt.2020.24.1297
- Pierrick Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1–79. MR 3904449, DOI 10.1007/s00222-018-0823-z
- P. Bousseau A proof of N. Takahashi’s conjecture for $(PP^2,E)$ and a refined sheaves/Gromov–Witten correspondence arXiv:1909.02992, 2019.
- Pierrick Bousseau, Honglu Fan, Shuai Guo, and Longting Wu, Holomorphic anomaly equation for $(\mathbb {P}^2,E)$ and the Nekrasov-Shatashvili limit of local $\mathbb {P}^2$, Forum Math. Pi 9 (2021), Paper No. e3, 57. MR 4254953, DOI 10.1017/fmp.2021.3
- Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, DOI 10.4007/annals.2007.166.317
- Tom Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815, DOI 10.1215/S0012-7094-08-14122-5
- Tom Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (2012), no. 1, 102–138. MR 2854172, DOI 10.1016/j.aim.2011.09.003
- Tom Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), no. 5, 523–561. MR 3710055, DOI 10.14231/2017-027
- Yalong Cao, Davesh Maulik, and Yukinobu Toda, Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds, Adv. Math. 338 (2018), 41–92. MR 3861701, DOI 10.1016/j.aim.2018.08.013
- M. Carl, M. Pumperla, and B. Siebert, A tropical view of Landau-Ginzburg models, http://www.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf, 2010.
- Mark Andrea A. de Cataldo and Luca Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633. MR 2525735, DOI 10.1090/S0273-0979-09-01260-9
- Man-Wai Cheung and Travis Mandel, Donaldson-Thomas invariants from tropical disks, Selecta Math. (N.S.) 26 (2020), no. 4, Paper No. 57, 46. MR 4131036, DOI 10.1007/s00029-020-00580-8
- Jinwon Choi and Kiryong Chung, The geometry of the moduli space of one-dimensional sheaves, Sci. China Math. 58 (2015), no. 3, 487–500. MR 3319919, DOI 10.1007/s11425-014-4889-9
- Jinwon Choi and Kiryong Chung, Moduli spaces of $\alpha$-stable pairs and wall-crossing on $\mathbb {P}^2$, J. Math. Soc. Japan 68 (2016), no. 2, 685–709. MR 3488141, DOI 10.2969/jmsj/06820685
- Jinwon Choi, Michel van Garrel, Sheldon Katz, and Nobuyoshi Takahashi, Log BPS numbers of log Calabi-Yau surfaces, Trans. Amer. Math. Soc. 374 (2021), no. 1, 687–732, DOI 10,1090/tran/8234. MR 4188197
- Jinwon Choi and Mario Maican, Torus action on the moduli spaces of torsion plane sheaves of multiplicity four, J. Geom. Phys. 83 (2014), 18–35. MR 3217411, DOI 10.1016/j.geomphys.2014.05.005
- Izzet Coskun and Jack Huizenga, Interpolation, Bridgeland stability and monomial schemes in the plane, J. Math. Pures Appl. (9) 102 (2014), no. 5, 930–971 (English, with English and French summaries). MR 3271294, DOI 10.1016/j.matpur.2014.02.010
- Izzet Coskun and Jack Huizenga, The birational geometry of the moduli spaces of sheaves on $\mathbb {P}^2$, Proceedings of the Gökova Geometry-Topology Conference 2014, Gökova Geometry/Topology Conference (GGT), Gökova, 2015, pp. 114–155. MR 3381441
- Izzet Coskun and Jack Huizenga, The ample cone of moduli spaces of sheaves on the plane, Algebr. Geom. 3 (2016), no. 1, 106–136. MR 3455422, DOI 10.14231/AG-2016-005
- Izzet Coskun, Jack Huizenga, and Matthew Woolf, The effective cone of the moduli space of sheaves on the plane, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1421–1467. MR 3635357, DOI 10.4171/JEMS/696
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5–77 (French). MR 498552
- Frederik Denef, Supergravity flows and D-brane stability, J. High Energy Phys. 8 (2000), Paper 50, 40. MR 1792870, DOI 10.1088/1126-6708/2000/08/050
- Michael R. Douglas, Bartomeu Fiol, and Christian Römelsberger, The spectrum of BPS branes on a noncompact Calabi-Yau, J. High Energy Phys. 9 (2005), 057, 40. MR 2174156, DOI 10.1088/1126-6708/2005/09/057
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur ${\mathbf {P}}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365
- Jean-Marc Drézet and Mario Maican, On the geometry of the moduli spaces of semi-stable sheaves supported on plane quartics, Geom. Dedicata 152 (2011), 17–49. MR 2795234, DOI 10.1007/s10711-010-9544-1
- J.-M. Drezet, Fibrés exceptionnels et suite spectrale de Beilinson généralisée sur ${\mathbf {P}}_2({\mathbf {C}})$, Math. Ann. 275 (1986), no. 1, 25–48 (French). MR 849052, DOI 10.1007/BF01458581
- J.-M. Drézet. Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur $\textbf {P}_2(\textbf {C})$, J. Reine Angew. Math., 380 (1987), 14–58.
- Richard Eager, Sam Alexandre Selmani, and Johannes Walcher, Exponential networks and representations of quivers, J. High Energy Phys. 8 (2017), 063, front matter+67. MR 3697419, DOI 10.1007/jhep08(2017)063
- Geir Ellingsrud and Stein Arild Strømme, Towards the Chow ring of the Hilbert scheme of ${\mathbf {P}}^2$, J. Reine Angew. Math. 441 (1993), 33–44. MR 1228610
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013), no. 7, 1643–1731. MR 3115984, DOI 10.1007/s00023-013-0239-7
- V. Ginzburg, Calabi-Yau algebras, Preprint, arXiv:math/0612139, 2006.
- Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, DOI 10.1016/0040-9383(80)90003-8
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- A. L. Gorodentsev and A. N. Rudakov, Exceptional vector bundles on projective spaces, Duke Math. J. 54 (1987), no. 1, 115–130. MR 885779, DOI 10.1215/S0012-7094-87-05409-3
- T. Gräfnitz, Tropical correspondence for smooth del Pezzo log Calabi-Yau pairs, 31 (2022), no.4; arXiv:2005.14018, 2020.
- Mark Gross, Tropical geometry and mirror symmetry, CBMS Regional Conference Series in Mathematics, vol. 114, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2011. MR 2722115, DOI 10.1090/cbms/114
- Mark Gross, Rahul Pandharipande, and Bernd Siebert, The tropical vertex, Duke Math. J. 153 (2010), no. 2, 297–362. MR 2667135, DOI 10.1215/00127094-2010-025
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- Paul Hacking, Exceptional bundles associated to degenerations of surfaces, Duke Math. J. 162 (2013), no. 6, 1171–1202. MR 3053568, DOI 10.1215/00127094-2147532
- Min-xin Huang and Albrecht Klemm, Direct integration for general $\Omega$ backgrounds, Adv. Theor. Math. Phys. 16 (2012), no. 3, 805–849. MR 3024275
- Jack Huizenga, Effective divisors on the Hilbert scheme of points in the plane and interpolation for stable bundles, J. Algebraic Geom. 25 (2016), no. 1, 19–75. MR 3419956, DOI 10.1090/jag/652
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168, DOI 10.1017/CBO9780511711985
- Dominic Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635–706. MR 2303235, DOI 10.1016/j.aim.2006.07.006
- Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, DOI 10.1093/qmath/ham019
- Dominic Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008), no. 1, 125–204. MR 2357325, DOI 10.1016/j.aim.2007.06.011
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI 10.1090/S0065-9266-2011-00630-1
- Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), no. 3, 2118–2168. MR 2739775, DOI 10.1016/j.aim.2010.09.019
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR 1315461, DOI 10.1093/qmath/45.4.515
- Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385. MR 2181810, DOI 10.1007/0-8176-4467-9_9
- M. Kontsevich and Y. Soibelman. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435, 2008.
- Maxim Kontsevich and Yan Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231–352. MR 2851153, DOI 10.4310/CNTP.2011.v5.n2.a1
- Maxim Kontsevich and Yan Soibelman, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital., vol. 15, Springer, Cham, 2014, pp. 197–308. MR 3330788, DOI 10.1007/978-3-319-06514-4_6
- J. Le Potier, Faisceaux semi-stables de dimension $1$ sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993), no. 7-8, 635–678 (French). MR 1263210
- Chunyi Li and Xiaolei Zhao, The minimal model program for deformations of Hilbert schemes of points on the projective plane, Algebr. Geom. 5 (2018), no. 3, 328–358. MR 3800356, DOI 10.14231/AG-2018-010
- Chunyi Li and Xiaolei Zhao, Birational models of moduli spaces of coherent sheaves on the projective plane, Geom. Topol. 23 (2019), no. 1, 347–426. MR 3921322, DOI 10.2140/gt.2019.23.347
- Chunyi Li and Xiaolei Zhao, Smoothness and Poisson structures of Bridgeland moduli spaces on Poisson surfaces, Math. Z. 291 (2019), no. 1-2, 437–447. MR 3936077, DOI 10.1007/s00209-018-2090-5
- Emanuele Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672. MR 2335991, DOI 10.4310/MRL.2007.v14.n4.a10
- Mario Maican, On the moduli spaces of semi-stable plane sheaves of dimension one and multiplicity five, Illinois J. Math. 55 (2011), no. 4, 1467–1532 (2013). MR 3082879
- Mario Maican, The classification of semistable plane sheaves supported on sextic curves, Kyoto J. Math. 53 (2013), no. 4, 739–786. MR 3160600, DOI 10.1215/21562261-2366086
- Mario Maican, The homology groups of certain moduli spaces of plane sheaves, Internat. J. Math. 24 (2013), no. 12, 1350098, 42. MR 3152206, DOI 10.1142/S0129167X13500985
- T. Mandel, Scattering diagrams, theta functions, and refined tropical curve counts, Preprint, arXiv:1503.06183, 2015.
- Jan Manschot, The Betti numbers of the moduli space of stable sheaves of rank 3 on $\mathbb {P}^2$, Lett. Math. Phys. 98 (2011), no. 1, 65–78. MR 2836429, DOI 10.1007/s11005-011-0490-0
- Jan Manschot, BPS invariants of semi-stable sheaves on rational surfaces, Lett. Math. Phys. 103 (2013), no. 8, 895–918. MR 3063951, DOI 10.1007/s11005-013-0624-7
- Jan Manschot, Sheaves on $\mathbb {P}^2$ and generalized Appell functions, Adv. Theor. Math. Phys. 21 (2017), no. 3, 655–681. MR 3695800, DOI 10.4310/ATMP.2017.v21.n3.a3
- Jan Manschot and Sergey Mozgovoy, Intersection cohomology of moduli spaces of sheaves on surfaces, Selecta Math. (N.S.) 24 (2018), no. 5, 3889–3926. MR 3874687, DOI 10.1007/s00029-018-0431-1
- Eyal Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622–646. MR 2304330, DOI 10.1016/j.aim.2006.03.006
- Cristian Martinez, Duality, Bridgeland wall-crossing and flips of secant varieties, Internat. J. Math. 28 (2017), no. 2, 1750011, 40. MR 3615584, DOI 10.1142/S0129167X17500112
- D. Maulik and J. Shen, Cohomological $\chi$-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles, Preprint, arXiv:2012.06627, 2020.
- S. Meinhardt, Donaldson-Thomas invariants vs. intersection cohomology for categories of homological dimension one, Preprint, arXiv:1512.03343, 2015.
- Sven Meinhardt and Markus Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019), 143–178. MR 4000572, DOI 10.1515/crelle-2017-0010
- Andrei Mikhailov, Nikita Nekrasov, and Savdeep Sethi, Geometric realizations of BPS states in $N=2$ theories, Nuclear Phys. B 531 (1998), no. 1-3, 345–362. MR 1657861, DOI 10.1016/S0550-3213(98)80001-1
- Ryo Ohkawa, Moduli of Bridgeland semistable objects on ${\mathbf {P}}^2$, Kodai Math. J. 33 (2010), no. 2, 329–366. MR 2681544, DOI 10.2996/kmj/1278076346
- Thomas Prince, The tropical superpotential for $\mathbb {P}^2$, Algebr. Geom. 7 (2020), no. 1, 30–58. MR 4038403, DOI 10.14231/ag-2020-002
- A. N. Rudakov, Markov numbers and exceptional bundles on ${\mathbf {P}}^2$, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 100–112, 240 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 1, 99–112. MR 936525, DOI 10.1070/IM1989v032n01ABEH000738
- Morihiko Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221–333. MR 1047415, DOI 10.2977/prims/1195171082
- Y. Shi, Orientation data for local $\mathbb {P}^2$, Preprint, arXiv:1809.01776, 2018.
- Andrew Strominger, Shing-Tung Yau, and Eric Zaslow, Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), no. 1-2, 243–259. MR 1429831, DOI 10.1016/0550-3213(96)00434-8
- Nobuyoshi Takahashi, Log mirror symmetry and local mirror symmetry, Comm. Math. Phys. 220 (2001), no. 2, 293–299. MR 1844627, DOI 10.1007/PL00005567
- Yukinobu Toda, Stability conditions and curve counting invariants on Calabi-Yau 3-folds, Kyoto J. Math. 52 (2012), no. 1, 1–50. MR 2892766, DOI 10.1215/21562261-1503745
- B. Toën. Grothendieck rings of Artin n-stacks, arXiv:math/0509098, 2005.
- M. Woolf. Nef and effective cones on the moduli space of torsion sheaves on the projective plane, arXiv:1305.1465, 2013.
- Kōta Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on $\mathbf P^2$, J. Reine Angew. Math. 453 (1994), 193–220. MR 1285785, DOI 10.1515/crll.1994.453.193
- Kōta Yoshioka, The Betti numbers of the moduli space of stable sheaves of rank $2$ on a ruled surface, Math. Ann. 302 (1995), no. 3, 519–540. MR 1339925, DOI 10.1007/BF01444506
- Yao Yuan, Moduli spaces of semistable sheaves of dimension 1 on $\mathbb {P}^2$, Pure Appl. Math. Q. 10 (2014), no. 4, 723–766. MR 3324766, DOI 10.4310/PAMQ.2014.v10.n4.a5
Additional Information
Pierrick Bousseau
Affiliation:
Institute for Theoretical Studies, ETH Zurich, 8092 Zurich, Switzerland
MR Author ID:
1306428
Email:
pboussea@ethz.ch
Received by editor(s):
May 13, 2020
Received by editor(s) in revised form:
August 31, 2021
Published electronically:
June 24, 2022
Additional Notes:
The author acknowledges the support of Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
Article copyright:
© Copyright 2022
University Press, Inc.