Non-commutative deformations of perverse coherent sheaves and rational curves
Author:
Yujiro Kawamata
Journal:
J. Algebraic Geom. 32 (2023), 59-91
DOI:
https://doi.org/10.1090/jag/805
Published electronically:
May 17, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: We consider non-commutative deformations of sheaves on algebraic varieties. We develop some tools to determine parameter algebras of versal non-commutative deformations for partial simple collections and the structure sheaves of smooth rational curves. We apply them to universal flopping contractions of length $2$ and higher. We confirm Donovan-Wemyss conjecture in the case of deformations of Lauferβs flops.
References
- Paul S. Aspinwall and David R. Morrison, Quivers from matrix factorizations, Comm. Math. Phys. 313 (2012), no.Β 3, 607β633. MR 2945618, DOI 10.1007/s00220-012-1520-1
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no.Β 1, 25β44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no.Β 1, 23β42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- Gavin Brown and Michael Wemyss, Gopakumar-Vafa invariants do not determine flops, Comm. Math. Phys. 361 (2018), no.Β 1, 143β154. MR 3825938, DOI 10.1007/s00220-017-3038-z
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no.Β 3, 613β632. MR 1893007, DOI 10.1007/s002220100185
- Carina Curto and David R. Morrison, Threefold flops via matrix factorization, J. Algebraic Geom. 22 (2013), no.Β 4, 599β627. MR 3084719, DOI 10.1090/S1056-3911-2013-00633-5
- Will Donovan and Michael Wemyss, Noncommutative deformations and flops, Duke Math. J. 165 (2016), no.Β 8, 1397β1474. MR 3504176, DOI 10.1215/00127094-3449887
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no.Β 1, 35β64. MR 570778, DOI 10.1090/S0002-9947-1980-0570778-7
- Zheng Hua, Contraction algebra and singularity of three-dimensional flopping contraction, Math. Z. 290 (2018), no.Β 1-2, 431β443. MR 3848439, DOI 10.1007/s00209-017-2024-7
- Zheng Hua and Yukinobu Toda, Contraction algebra and invariants of singularities, Int. Math. Res. Not. IMRN 10 (2018), 3173β3198. MR 3805201, DOI 10.1093/imrn/rnw333
- Joseph Karmazyn, The length classification of threefold flops via noncommutative algebras, Adv. Math. 343 (2019), 393β447. MR 3883210, DOI 10.1016/j.aim.2018.11.023
- Sheldon Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), no.Β 2, 185β195. MR 2420017
- Sheldon Katz and David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), no.Β 3, 449β530. MR 1158626
- Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension $3$, Math. Res. Lett. 1 (1994), no.Β 1, 49β52. MR 1258489, DOI 10.4310/MRL.1994.v1.n1.a6
- Yujiro Kawamata, On multi-pointed non-commutative deformations and Calabi-Yau threefolds, Compos. Math. 154 (2018), no.Β 9, 1815β1842. MR 3867285, DOI 10.1112/s0010437x18007248
- Yujiro Kawamata, Non-commutative deformations of simple objects in a category of perverse coherent sheaves, Selecta Math. (N.S.) 26 (2020), no.Β 3, Paper No. 43, 22. MR 4117994, DOI 10.1007/s00029-020-00570-w
- Yujiro Kawamata, On non-commutative formal deformations of coherent sheaves on an algebraic variety, EMS Surv. Math. Sci. 8 (2021), no.Β 1-2, 237β263. MR 4307209, DOI 10.4171/emss/49
- Henry B. Laufer, On $\textbf {C}P^{1}$ as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp.Β 261β275. MR 627762
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no.Β 2, 243β251. MR 674404, DOI 10.1007/BF01399504
- Henry C. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp.Β 343β371. MR 713260
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp.Β 131β180. MR 715649, DOI 10.2969/aspm/00110131
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no.Β 3, 436β456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Yukinobu Toda, Non-commutative width and Gopakumar-Vafa invariants, Manuscripta Math. 148 (2015), no.Β 3-4, 521β533. MR 3414491, DOI 10.1007/s00229-015-0760-8
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no.Β 3, 423β455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Michel Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.) 21 (2015), no.Β 2, 555β603. MR 3338683, DOI 10.1007/s00029-014-0166-6
- O. van Garderen, Donaldson-Thomas invariants of length 2 flops, arXiv:2008.02591, 2020.
References
- Paul S. Aspinwall and David R. Morrison, Quivers from matrix factorizations, Comm. Math. Phys. 313 (2012), no. 3, 607β633. MR 2945618, DOI 10.1007/s00220-012-1520-1
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25β44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23β42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- Gavin Brown and Michael Wemyss, Gopakumar-Vafa invariants do not determine flops, Comm. Math. Phys. 361 (2018), no. 1, 143β154. MR 3825938, DOI 10.1007/s00220-017-3038-z
- Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613β632. MR 1893007, DOI 10.1007/s002220100185
- Carina Curto and David R. Morrison, Threefold flops via matrix factorization, J. Algebraic Geom. 22 (2013), no. 4, 599β627. MR 3084719, DOI 10.1090/S1056-3911-2013-00633-5
- Will Donovan and Michael Wemyss, Noncommutative deformations and flops, Duke Math. J. 165 (2016), no. 8, 1397β1474. MR 3504176, DOI 10.1215/00127094-3449887
- David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35β64. MR 570778, DOI 10.2307/1999875
- Zheng Hua, Contraction algebra and singularity of three-dimensional flopping contraction, Math. Z. 290 (2018), no. 1-2, 431β443. MR 3848439, DOI 10.1007/s00209-017-2024-7
- Zheng Hua and Yukinobu Toda, Contraction algebra and invariants of singularities, Int. Math. Res. Not. IMRN 10 (2018), 3173β3198. MR 3805201, DOI 10.1093/imrn/rnw333
- Joseph Karmazyn, The length classification of threefold flops via noncommutative algebras, Adv. Math. 343 (2019), 393β447. MR 3883210, DOI 10.1016/j.aim.2018.11.023
- Sheldon Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), no. 2, 185β195. MR 2420017
- Sheldon Katz and David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), no. 3, 449β530. MR 1158626
- Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension $3$, Math. Res. Lett. 1 (1994), no. 1, 49β52. MR 1258489, DOI 10.4310/MRL.1994.v1.n1.a6
- Yujiro Kawamata, On multi-pointed non-commutative deformations and Calabi-Yau threefolds, Compos. Math. 154 (2018), no. 9, 1815β1842. MR 3867285, DOI 10.1112/s0010437x18007248
- Yujiro Kawamata, Non-commutative deformations of simple objects in a category of perverse coherent sheaves, Selecta Math. (N.S.) 26 (2020), no. 3, Paper No. 43, 22. MR 4117994, DOI 10.1007/s00029-020-00570-w
- Yujiro Kawamata, On non-commutative formal deformations of coherent sheaves on an algebraic variety, EMS Surv. Math. Sci. 8 (2021), no. 1-2, 237β263. MR 4307209, DOI 10.4171/emss/49
- Henry B. Laufer, On ${\mathbf C}P^{1}$ as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 261β275. MR 627762
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243β251. MR 674404, DOI 10.1007/BF01399504
- Henry C. Pinkham, Factorization of birational maps in dimension $3$, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 343β371. MR 713260
- Miles Reid, Minimal models of canonical $3$-folds, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 131β180. MR 715649, DOI 10.2969/aspm/00110131
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436β456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Yukinobu Toda, Non-commutative width and Gopakumar-Vafa invariants, Manuscripta Math. 148 (2015), no. 3-4, 521β533. MR 3414491, DOI 10.1007/s00229-015-0760-8
- Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423β455. MR 2057015, DOI 10.1215/S0012-7094-04-12231-6
- Michel Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.) 21 (2015), no. 2, 555β603. MR 3338683, DOI 10.1007/s00029-014-0166-6
- O. van Garderen, Donaldson-Thomas invariants of length 2 flops, arXiv:2008.02591, 2020.
Additional Information
Yujiro Kawamata
Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8914 Japan; Morningside Center of Mathematics, Chinese Academy of Sciences, Haidian District, Beijing 100190, Peopleβs Republic of China; Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; and National Center for Theoretical Sciences, Mathematics Division, National Taiwan University, Taipei 106, Taiwan
MR Author ID:
99410
Email:
kawamata@ms.u-tokyo.ac.jp
Received by editor(s):
June 17, 2020
Published electronically:
May 17, 2022
Additional Notes:
This work was partly supported by JSPS Grant-in-Aid 16H02141.
Article copyright:
© Copyright 2022
University Press, Inc.