Positivity of Riemann–Roch polynomials and Todd classes of hyperkähler manifolds
Author:
Chen Jiang
Journal:
J. Algebraic Geom. 32 (2023), 239-269
DOI:
https://doi.org/10.1090/jag/798
Published electronically:
August 3, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract:
For a hyperkähler manifold $X$ of dimension $2n$, Huybrechts showed that there are constants $a_0$, $a_2$, …, $a_{2n}$ such that \begin{equation*} \chi (L) =\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q_X(c_1(L))^{i} \end{equation*} for any line bundle $L$ on $X$, where $q_X$ is the Beauville–Bogomolov–Fujiki quadratic form of $X$. Here the polynomial $\sum _{i=0}^n\frac {a_{2i}}{(2i)!}q^{i}$ is called the Riemann–Roch polynomial of $X$.
In this paper, we show that all coefficients of the Riemann–Roch polynomial of $X$ are positive. This confirms a conjecture proposed by Cao and the author, which implies Kawamata’s effective non-vanishing conjecture for projective hyperkähler manifolds. It also confirms a question of Riess on strict monotonicity of Riemann–Roch polynomials.
In order to estimate the coefficients of the Riemann–Roch polynomial, we produce a Lefschetz-type decomposition of $\mathrm {td}^{1/2}(X)$, the root of the Todd genus of $X$, via the Rozansky–Witten theory following the ideas of Hitchin and Sawon, and of Nieper-Wißkirchen.
References
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- F. A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (Russian). MR 514769
- Marc A. Nieper, Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds, J. Algebraic Geom. 12 (2003), no. 4, 715–739. MR 1993762, DOI 10.1090/S1056-3911-03-00325-4
- Yalong Cao and Chen Jiang, Remarks on Kawamata’s effective non-vanishing conjecture for manifolds with trivial first Chern classes, Math. Z. 296 (2020), no. 1-2, 615–637. MR 4140756, DOI 10.1007/s00209-019-02455-x
- Geir Ellingsrud, Lothar Göttsche, and Manfred Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), no. 1, 81–100. MR 1795551
- Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165. MR 946237, DOI 10.2969/aspm/01010105
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559, DOI 10.1007/978-3-642-19004-9
- Daniel Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669. MR 1879810, DOI 10.4310/MRL.2001.v8.n5.a8
- Nigel Hitchin and Justin Sawon, Curvature and characteristic numbers of hyper-Kähler manifolds, Duke Math. J. 106 (2001), no. 3, 599–615. MR 1813238, DOI 10.1215/S0012-7094-01-10637-6
- Daniel Huybrechts, Compact hyperkähler manifolds, Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001) Universitext, Springer, Berlin, 2003, pp. 161–225. MR 1963562
- D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113; Erratum: “Compact hyper-Kähler manifolds: basic results”, Invent. Math. 152 (2003), no. 2, 209–212.
- Daniel Huybrechts, Finiteness results for compact hyperkähler manifolds, J. Reine Angew. Math. 558 (2003), 15–22. MR 1979180, DOI 10.1515/crll.2003.038
- Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. An introduction. MR 2093043
- M. Kapranov, Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), no. 1, 71–113. MR 1671737, DOI 10.1023/A:1000664527238
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI 10.1007/BF01456407
- Eduard Looijenga and Valery A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361–412. MR 1465328, DOI 10.1007/s002220050166
- Giovanni Mongardi, Antonio Rapagnetta, and Giulia Saccà, The Hodge diamond of O’Grady’s six-dimensional example, Compos. Math. 154 (2018), no. 5, 984–1013. MR 3798592, DOI 10.1112/S0010437X1700803X
- M. A. Nieper-Wißkirchen, Characteristic classes and Rozansky–Witten invariants of compact hyperkähler manifolds, Ph.D Thesis, Köln 2002.
- Marc A. Nieper, Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds, J. Algebraic Geom. 12 (2003), no. 4, 715–739. MR 1993762, DOI 10.1090/S1056-3911-03-00325-4
- Marc Nieper-Wißkirchen, Chern numbers and Rozansky-Witten invariants of compact hyper-Kähler manifolds, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2110899, DOI 10.1142/9789812562357
- Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a $K3$, J. Reine Angew. Math. 512 (1999), 49–117. MR 1703077, DOI 10.1515/crll.1999.056
- Kieran G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), no. 3, 435–505. MR 1966024, DOI 10.1090/S1056-3911-03-00323-0
- Á. D. R. Ortiz, Riemann–Roch polynomials of the known hyperkähler manifolds, with an appendix by Yalong Cao and Chen Jiang, arXiv:2006.09307v2, 2020.
- U. Riess, Base divisors of big and nef line bundles on irreducible symplectic varieties, arXiv:1807.05192v1, 2018; to appear in Ann. Inst. Fourier (Grenoble).
- L. Rozansky and E. Witten, Hyper-Kähler geometry and invariants of three-manifolds, Selecta Math. (N.S.) 3 (1997), no. 3, 401–458. MR 1481135, DOI 10.1007/s000290050016
- J. Sawon, Rozansky–Witten invariants of hyperkähler manifolds, Ph.D. thesis, University of Cambridge, arXiv:math/0404360v1, October 1999.
- Dylan Paul Thurston, Wheeling: A diagrammatic analogue of the Duflo isomorphism, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of California, Berkeley. MR 2701043
- M. S. Verbitskiĭ, Action of the Lie algebra of $\textrm {SO}(5)$ on the cohomology of a hyper-Kähler manifold, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991). MR 1082036, DOI 10.1007/BF01077967
- M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611. MR 1406664, DOI 10.1007/BF02247112
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
References
- Arnaud Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), no. 4, 755–782 (1984) (French). MR 730926
- F. A. Bogomolov, Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR 243 (1978), no. 5, 1101–1104 (Russian). MR 514769
- Marc A. Nieper, Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds, J. Algebraic Geom. 12 (2003), no. 4, 715–739. MR 1993762, DOI 10.1090/S1056-3911-03-00325-4
- Yalong Cao and Chen Jiang, Remarks on Kawamata’s effective non-vanishing conjecture for manifolds with trivial first Chern classes, Math. Z. 296 (2020), no. 1-2, 615–637. MR 4140756, DOI 10.1007/s00209-019-02455-x
- Geir Ellingsrud, Lothar Göttsche, and Manfred Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), no. 1, 81–100. MR 1795551
- Akira Fujiki, On the de Rham cohomology group of a compact Kähler symplectic manifold, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 105–165. MR 946237, DOI 10.2969/aspm/01010105
- M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559, DOI 10.1007/978-3-642-19004-9
- Daniel Guan, On the Betti numbers of irreducible compact hyperkähler manifolds of complex dimension four, Math. Res. Lett. 8 (2001), no. 5-6, 663–669. MR 1879810, DOI 10.4310/MRL.2001.v8.n5.a8
- Nigel Hitchin and Justin Sawon, Curvature and characteristic numbers of hyper-Kähler manifolds, Duke Math. J. 106 (2001), no. 3, 599–615. MR 1813238, DOI 10.1215/S0012-7094-01-10637-6
- Daniel Huybrechts, Compact hyperkähler manifolds, Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001) Universitext, Springer, Berlin, 2003, pp. 161–225. MR 1963562
- D. Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63–113; Erratum: “Compact hyper-Kähler manifolds: basic results”, Invent. Math. 152 (2003), no. 2, 209–212.
- Daniel Huybrechts, Finiteness results for compact hyperkähler manifolds, J. Reine Angew. Math. 558 (2003), 15–22. MR 1979180, DOI 10.1515/crll.2003.038
- Daniel Huybrechts, Complex geometry: An introduction, Universitext, Springer-Verlag, Berlin, 2005. MR 2093043
- M. Kapranov, Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), no. 1, 71–113. MR 1671737, DOI 10.1023/A:1000664527238
- Yujiro Kawamata, A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), no. 1, 43–46. MR 675204, DOI 10.1007/BF01456407
- Eduard Looijenga and Valery A. Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997), no. 2, 361–412. MR 1465328, DOI 10.1007/s002220050166
- Giovanni Mongardi, Antonio Rapagnetta, and Giulia Saccà, The Hodge diamond of O’Grady’s six-dimensional example, Compos. Math. 154 (2018), no. 5, 984–1013. MR 3798592, DOI 10.1112/S0010437X1700803X
- M. A. Nieper-Wißkirchen, Characteristic classes and Rozansky–Witten invariants of compact hyperkähler manifolds, Ph.D Thesis, Köln 2002.
- Marc A. Nieper, Hirzebruch-Riemann-Roch formulae on irreducible symplectic Kähler manifolds, J. Algebraic Geom. 12 (2003), no. 4, 715–739. MR 1993762, DOI 10.1090/S1056-3911-03-00325-4
- Marc Nieper-Wißkirchen, Chern numbers and Rozansky-Witten invariants of compact hyper-Kähler manifolds, World Scientific Publishing Co., Inc., River Edge, NJ, 2004. MR 2110899, DOI 10.1142/9789812562357
- Kieran G. O’Grady, Desingularized moduli spaces of sheaves on a $K3$, J. Reine Angew. Math. 512 (1999), 49–117. MR 1703077, DOI 10.1515/crll.1999.056
- Kieran G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12 (2003), no. 3, 435–505. MR 1966024, DOI 10.1090/S1056-3911-03-00323-0
- Á. D. R. Ortiz, Riemann–Roch polynomials of the known hyperkähler manifolds, with an appendix by Yalong Cao and Chen Jiang, arXiv:2006.09307v2, 2020.
- U. Riess, Base divisors of big and nef line bundles on irreducible symplectic varieties, arXiv:1807.05192v1, 2018; to appear in Ann. Inst. Fourier (Grenoble).
- L. Rozansky and E. Witten, Hyper-Kähler geometry and invariants of three-manifolds, Selecta Math. (N.S.) 3 (1997), no. 3, 401–458. MR 1481135, DOI 10.1007/s000290050016
- J. Sawon, Rozansky–Witten invariants of hyperkähler manifolds, Ph.D. thesis, University of Cambridge, arXiv:math/0404360v1, October 1999.
- Dylan Paul Thurston, Wheeling: A diagrammatic analogue of the Duflo isomorphism, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of California, Berkeley. MR 2701043
- M. S. Verbitskiĭ, Action of the Lie algebra of ${\mathrm {SO}}(5)$ on the cohomology of a hyper-Kähler manifold, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991). MR 1082036, DOI 10.1007/BF01077967
- M. Verbitsky, Cohomology of compact hyper-Kähler manifolds and its applications, Geom. Funct. Anal. 6 (1996), no. 4, 601–611. MR 1406664, DOI 10.1007/BF02247112
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Additional Information
Chen Jiang
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, 2005 Songhu Road, Shanghai 200438, People’s Republic of China
ORCID:
0000-0003-0562-6240
Email:
chenjiang@fudan.edu.cn
Received by editor(s):
December 28, 2020
Received by editor(s) in revised form:
November 21, 2021
Published electronically:
August 3, 2022
Additional Notes:
The author was supported by National Key Research and Development Program of China (Grant No. 2020YFA0713200)
Article copyright:
© Copyright 2022
University Press, Inc.