ACC for local volumes and boundedness of singularities
Authors:
Jingjun Han, Yuchen Liu and Lu Qi
Journal:
J. Algebraic Geom. 32 (2023), 519-583
DOI:
https://doi.org/10.1090/jag/799
Published electronically:
November 1, 2022
Full-text PDF
Abstract |
References |
Additional Information
Abstract: The ascending chain condition (ACC) conjecture for local volumes predicts that the set of local volumes of Kawamata log terminal (klt) singularities $x\in (X,\Delta )$ satisfies the ACC if the coefficients of $\Delta$ belong to a descending chain condition (DCC) set. In this paper, we prove the ACC conjecture for local volumes under the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of $\delta$-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.
References
- Florin Ambro, Variation of log canonical thresholds in linear systems, Int. Math. Res. Not. IMRN 14 (2016), 4418–4448. MR 3556423, DOI 10.1093/imrn/rnv284
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188, DOI 10.1007/BF02684596
- K. Ascher, K. DeVleming, and Y. Liu, Wall crossing for K-moduli spaces of plane curves, arXiv:1909.04576, 2019.
- K. Ascher, K. DeVleming, and Y. Liu, K-moduli of curves on a quadric surface and K3 surfaces, J. Inst. Math. Jussieu, DOI: https://doi.org/10.1017/S1474748021000384.
- Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019), 27–89. MR 3956691, DOI 10.1515/crelle-2016-0033
- Robert J. Berman, Sébastien Boucksom, and Mattias Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), no. 3, 605–652. MR 4334189, DOI 10.1090/jams/964
- C. Birkar, Log Calabi-Yau fibrations, arXiv:1811.10709, 2018.
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Caucher Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193 (2021), no. 2, 347–405. MR 4224714, DOI 10.4007/annals.2021.193.2.1
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- H. Blum, Singularities and K-stability, Ph.D. Thesis, http://www-personal.umich.edu/~blum/thesis.pdf.
- Harold Blum and Mattias Jonsson, Thresholds, valuations, and K-stability, Adv. Math. 365 (2020), 107062, 57. MR 4067358, DOI 10.1016/j.aim.2020.107062
- H. Blum and Y. Liu, Openness of uniform K-stability in families of $\mathbb {Q}$-Fano varieties, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 1, 1–41.
- Harold Blum and Yuchen Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256. MR 4228279, DOI 10.4171/jems/1032
- H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties, Duke Math. J., DOI: https://doi.org/10.1215/00127094-2022-0054.
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, A refinement of Izumi’s theorem, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 55–81. MR 3329027
- Lukas Braun, The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math. 226 (2021), no. 3, 845–896. MR 4337973, DOI 10.1007/s00222-021-01062-0
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Guodu Chen and Jingjun Han, Boundedness of $(\epsilon , n)$-complements for surfaces, Adv. Math. 383 (2021), Paper No. 107703, 40. MR 4236289, DOI 10.1016/j.aim.2021.107703
- Weichung Chen, Gabriele Di Cerbo, Jingjun Han, Chen Jiang, and Roberto Svaldi, Birational boundedness of rationally connected Calabi-Yau 3-folds, Adv. Math. 378 (2021), Paper No. 107541, 32. MR 4191257, DOI 10.1016/j.aim.2020.107541
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278. MR 3264768, DOI 10.1090/S0894-0347-2014-00801-8
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J. 152 (2010), no. 1, 93–114. MR 2643057, DOI 10.1215/00127094-2010-008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 221–257. MR 2779474, DOI 10.4171/007-1/10
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014), no. 1, 63–106. MR 3261011, DOI 10.1007/s11511-014-0116-3
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690, DOI 10.1353/ajm.2003.0010
- Kento Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. MR 3783213, DOI 10.1353/ajm.2018.0009
- Kento Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math. 59 (2019), no. 2, 399–418. MR 3960299, DOI 10.1215/21562261-2019-0012
- Kento Fujita and Yuji Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521. MR 3896135, DOI 10.2748/tmj/1546570823
- Patricio Gallardo, Jesus Martinez-Garcia, and Cristiano Spotti, Applications of the moduli continuity method to log K-stable pairs, J. Lond. Math. Soc. (2) 103 (2021), no. 2, 729–759. MR 4230917, DOI 10.1112/jlms.12390
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016), no. 10, 1965–2004. MR 3522654, DOI 10.1215/00127094-3450859
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Christopher D. Hacon and Chenyang Xu, Boundedness of log Calabi-Yau pairs of Fano type, Math. Res. Lett. 22 (2015), no. 6, 1699–1716. MR 3507257, DOI 10.4310/MRL.2015.v22.n6.a8
- Jingjun Han, Jihao Liu, and Joaquín Moraga, Bounded deformations of $(\epsilon ,\delta )$-log canonical singularities, J. Math. Sci. Univ. Tokyo 27 (2020), no. 1, 1–28. MR 4246623
- J. Han, J. Liu, L. Qi, ACC for local volumes and boundedness of singularities, arXiv:2011:06509, 2020.
- J. Han, J. Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, With an appendix by Y. Liu, arXiv:1903.07202v2, 2019.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Hans-Joachim Hein and Song Sun, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. MR 3735865, DOI 10.1007/s10240-017-0092-1
- Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, DOI 10.1090/S0002-9947-09-04715-1
- Chen Jiang, On birational boundedness of Fano fibrations, Amer. J. Math. 140 (2018), no. 5, 1253–1276. MR 3862064, DOI 10.1353/ajm.2018.0030
- C. Jiang, A gap theorem for minimal log discrepancies of non-canonical singularities in dimension three, J. Algebraic Geom., 30 (2021), 759–800, DOI: https://doi.org/10.1007/s42543-021-00039-5.
- Chen Jiang, Boundedness of $\Bbb Q$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.2445
- Shin-Yao Jow and Ezra Miller, Multiplier ideals of sums via cellular resolutions, Math. Res. Lett. 15 (2008), no. 2, 359–373. MR 2385647, DOI 10.4310/MRL.2008.v15.n2.a13
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- Masayuki Kawakita, On equivalent conjectures for minimal log discrepancies on smooth threefolds, J. Algebraic Geom. 30 (2021), no. 1, 97–149. MR 4233179, DOI 10.1090/jag/757
- Felix Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser Verlag, Basel; B. G. Teubner, Stuttgart, 1993 (German, with German summary). Reprint of the 1884 original; Edited, with an introduction and commentary by Peter Slodowy. MR 1315530, DOI 10.1007/978-3-0348-8594-2
- J. Kollár et al, Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).
- J. Kollár, Seifert $G_m$-bundles, arXiv:math/0404386, 2004.
- J. Kollár, Which powers of holomorphic functions are integrable, arXiv:0805.0756, 2008.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- S. A. Kudryavtsev, On purely log terminal blow-ups, Mat. Zametki 69 (2001), no. 6, 892–898 (Russian, with Russian summary); English transl., Math. Notes 69 (2001), no. 5-6, 814–819. MR 1861570, DOI 10.1023/A:1010234532502
- Christer Lech, Note on multiplicities of ideals, Ark. Mat. 4 (1960), 63–86 (1960). MR 140536, DOI 10.1007/BF02591323
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Chi Li and Yuchen Liu, Kähler-Einstein metrics and volume minimization, Adv. Math. 341 (2019), 440–492. MR 3872852, DOI 10.1016/j.aim.2018.10.038
- Chi Li, Yuchen Liu, and Chenyang Xu, A guided tour to normalized volume, Geometric analysis—in honor of Gang Tian’s 60th birthday, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, [2020] ©2020, pp. 167–219. MR 4181002, DOI 10.1007/978-3-030-34953-0_{1}0
- C. Li, G. Tian, and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, arXiv:1903.01215, 2019; Peking Math. J., DOI: https://doi.org/10.1007/s42543-021-00039-5.
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Chi Li and Chenyang Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232. MR 3194814, DOI 10.4007/annals.2014.180.1.4
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- J. Liu, Toward the equivalence of the ACC for a-log canonical thresholds and the ACC for minimal log discrepancies, arXiv:1809.04839v3, 2018.
- Jihao Liu and Liudan Xiao, An optimal gap of minimal log discrepancies of threefold non-canonical singularities, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106674, 23. MR 4200812, DOI 10.1016/j.jpaa.2021.106674
- Yuchen Liu, The volume of singular Kähler-Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. MR 3797604, DOI 10.1112/S0010437X18007042
- Y. Liu, K-stability of cubic fourfolds, J. Reine Angew. Math. 786 (2022), 55–77.
- Yuchen Liu and Chenyang Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. MR 3992032, DOI 10.1215/00127094-2019-0006
- J. Moraga, Small quotient minimal log discrepancies, arXiv:2008.13311, 2020; to appear in Michigan Math. J.
- Shigefumi Mori, On $3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, DOI 10.1017/S0027763000021358
- Yusuke Nakamura, On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Math. J. 65 (2016), no. 1, 165–187. MR 3466821
- Yuji Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645–661. MR 3010808, DOI 10.4007/annals.2013.177.2.6
- Yu. G. Prokhorov, Blow-ups of canonical singularities, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 301–317. MR 1754677
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963, DOI 10.1090/pspum/046.1/927963
- V. V. Shokurov, $3$-fold log models, J. Math. Sci. 81 (1996), no. 3, 2667–2699. Algebraic geometry, 4. MR 1420223, DOI 10.1007/BF02362335
- V. V. Shokurov, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328–351 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 315–336. MR 2101303
- Cristiano Spotti and Song Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. MR 3882206, DOI 10.4310/pamq.2017.v13.n3.a5
- Shunsuke Takagi, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006), no. 6, 1345–1362. MR 2275023, DOI 10.1353/ajm.2006.0049
- Michael Temkin, Functorial desingularization over $\bf Q$: boundaries and the embedded case, Israel J. Math. 224 (2018), no. 1, 455–504. MR 3799764, DOI 10.1007/s11856-018-1656-6
- Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. MR 3352459, DOI 10.1002/cpa.21578
- Chenyang Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014), no. 3, 409–414. MR 3187625, DOI 10.1112/S0010437X13007562
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. MR 4325260, DOI 10.4310/CJM.2021.v9.n1.a2
- Ziquan Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), no. 1, 195–223. MR 4309493, DOI 10.1007/s00222-021-01046-0
References
- Florin Ambro, Variation of log canonical thresholds in linear systems, Int. Math. Res. Not. IMRN 14 (2016), 4418–4448. MR 3556423, DOI 10.1093/imrn/rnv284
- M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23–58. MR 268188
- K. Ascher, K. DeVleming, and Y. Liu, Wall crossing for K-moduli spaces of plane curves, arXiv:1909.04576, 2019.
- K. Ascher, K. DeVleming, and Y. Liu, K-moduli of curves on a quadric surface and K3 surfaces, J. Inst. Math. Jussieu, DOI: https://doi.org/10.1017/S1474748021000384.
- Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019), 27–89. MR 3956691, DOI 10.1515/crelle-2016-0033
- Robert J. Berman, Sébastien Boucksom, and Mattias Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc. 34 (2021), no. 3, 605–652. MR 4334189, DOI 10.1090/jams/964
- C. Birkar, Log Calabi-Yau fibrations, arXiv:1811.10709, 2018.
- Caucher Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math. (2) 190 (2019), no. 2, 345–463. MR 3997127, DOI 10.4007/annals.2019.190.2.1
- Caucher Birkar, Singularities of linear systems and boundedness of Fano varieties, Ann. of Math. (2) 193 (2021), no. 2, 347–405. MR 4224714, DOI 10.4007/annals.2021.193.2.1
- Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468. MR 2601039, DOI 10.1090/S0894-0347-09-00649-3
- Harold Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018), no. 4, 820–849. MR 3778195, DOI 10.1112/S0010437X17008016
- H. Blum, Singularities and K-stability, Ph.D. Thesis, http://www-personal.umich.edu/~blum/thesis.pdf.
- Harold Blum and Mattias Jonsson, Thresholds, valuations, and K-stability, Adv. Math. 365 (2020), 107062, 57. MR 4067358, DOI 10.1016/j.aim.2020.107062
- H. Blum and Y. Liu, Openness of uniform K-stability in families of $\mathbb {Q}$-Fano varieties, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 1, 1–41.
- Harold Blum and Yuchen Liu, The normalized volume of a singularity is lower semicontinuous, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 4, 1225–1256. MR 4228279, DOI 10.4171/jems/1032
- H. Blum, Y. Liu, and C. Xu, Openness of K-semistability for Fano varieties, Duke Math. J., DOI: https://doi.org/10.1215/00127094-2022-0054.
- S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valuation spaces and multiplier ideals on singular varieties, Recent advances in algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442
- Sébastien Boucksom, Charles Favre, and Mattias Jonsson, A refinement of Izumi’s theorem, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 55–81. MR 3329027
- Lukas Braun, The local fundamental group of a Kawamata log terminal singularity is finite, Invent. Math. 226 (2021), no. 3, 845–896. MR 4337973, DOI 10.1007/s00222-021-01062-0
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Guodu Chen and Jingjun Han, Boundedness of $(\epsilon , n)$-complements for surfaces, Adv. Math. 383 (2021), Paper No. 107703, 40. MR 4236289, DOI 10.1016/j.aim.2021.107703
- Weichung Chen, Gabriele Di Cerbo, Jingjun Han, Chen Jiang, and Roberto Svaldi, Birational boundedness of rationally connected Calabi-Yau 3-folds, Adv. Math. 378 (2021), Paper No. 107541, 32. MR 4191257, DOI 10.1016/j.aim.2020.107541
- Xiuxiong Chen, Simon Donaldson, and Song Sun, Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), no. 1, 235–278. MR 3264768, DOI 10.1090/S0894-0347-2014-00801-8
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties, Duke Math. J. 152 (2010), no. 1, 93–114. MR 2643057, DOI 10.1215/00127094-2010-008
- Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Log canonical thresholds on varieties with bounded singularities, Classification of algebraic varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 221–257. MR 2779474, DOI 10.4171/007-1/10
- Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014), no. 1, 63–106. MR 3261011, DOI 10.1007/s11511-014-0116-3
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. with J. Dieudonné. MR 217085
- Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2, 409–440. MR 1963690
- Kento Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Amer. J. Math. 140 (2018), no. 2, 391–414. MR 3783213, DOI 10.1353/ajm.2018.0009
- Kento Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math. 59 (2019), no. 2, 399–418. MR 3960299, DOI 10.1215/21562261-2019-0012
- Kento Fujita and Yuji Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521. MR 3896135, DOI 10.2748/tmj/1546570823
- Patricio Gallardo, Jesus Martinez-Garcia, and Cristiano Spotti, Applications of the moduli continuity method to log K-stable pairs, J. Lond. Math. Soc. (2) 103 (2021), no. 2, 729–759. MR 4230917, DOI 10.1112/jlms.12390
- Daniel Greb, Stefan Kebekus, and Thomas Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016), no. 10, 1965–2004. MR 3522654, DOI 10.1215/00127094-3450859
- Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. MR 3224718, DOI 10.4007/annals.2014.180.2.3
- Christopher D. Hacon and Chenyang Xu, Boundedness of log Calabi-Yau pairs of Fano type, Math. Res. Lett. 22 (2015), no. 6, 1699–1716. MR 3507257, DOI 10.4310/MRL.2015.v22.n6.a8
- Jingjun Han, Jihao Liu, and Joaquín Moraga, Bounded deformations of $(\epsilon ,\delta )$-log canonical singularities, J. Math. Sci. Univ. Tokyo 27 (2020), no. 1, 1–28. MR 4246623
- J. Han, J. Liu, L. Qi, ACC for local volumes and boundedness of singularities, arXiv:2011:06509, 2020.
- J. Han, J. Liu, and V. V. Shokurov, ACC for minimal log discrepancies of exceptional singularities, With an appendix by Y. Liu, arXiv:1903.07202v2, 2019.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Hans-Joachim Hein and Song Sun, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 73–130. MR 3735865, DOI 10.1007/s10240-017-0092-1
- Amit Hogadi and Chenyang Xu, Degenerations of rationally connected varieties, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3931–3949. MR 2491906, DOI 10.1090/S0002-9947-09-04715-1
- Chen Jiang, On birational boundedness of Fano fibrations, Amer. J. Math. 140 (2018), no. 5, 1253–1276. MR 3862064, DOI 10.1353/ajm.2018.0030
- C. Jiang, A gap theorem for minimal log discrepancies of non-canonical singularities in dimension three, J. Algebraic Geom., 30 (2021), 759–800, DOI: https://doi.org/10.1007/s42543-021-00039-5.
- Chen Jiang, Boundedness of $\mathbb {Q}$-Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 5, 1235–1248 (English, with English and French summaries). MR 4174851, DOI 10.24033/asens.244
- Shin-Yao Jow and Ezra Miller, Multiplier ideals of sums via cellular resolutions, Math. Res. Lett. 15 (2008), no. 2, 359–373. MR 2385647, DOI 10.4310/MRL.2008.v15.n2.a13
- Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145–2209 (2013) (English, with English and French summaries). MR 3060755, DOI 10.5802/aif.2746
- Masayuki Kawakita, On equivalent conjectures for minimal log discrepancies on smooth threefolds, J. Algebraic Geom. 30 (2021), no. 1, 97–149. MR 4233179, DOI 10.1090/jag/757
- Felix Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Birkhäuser Verlag, Basel; B. G. Teubner, Stuttgart, 1993 (German, with German summary). Reprint of the 1884 original; Edited, with an introduction and commentary by Peter Slodowy. MR 1315530, DOI 10.1007/978-3-0348-8594-2
- J. Kollár et al, Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991, Astérisque No. 211 (1992).
- J. Kollár, Seifert $G_m$-bundles, arXiv:math/0404386, 2004.
- J. Kollár, Which powers of holomorphic functions are integrable, arXiv:0805.0756, 2008.
- János Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013. With a collaboration of Sándor Kovács. MR 3057950, DOI 10.1017/CBO9781139547895
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- S. A. Kudryavtsev, On purely log terminal blow-ups, Mat. Zametki 69 (2001), no. 6, 892–898 (Russian, with Russian summary); English transl., Math. Notes 69 (2001), no. 5-6, 814–819. MR 1861570, DOI 10.1023/A:1010234532502
- Christer Lech, Note on multiplicities of ideals, Ark. Mat. 4 (1960), 63–86 (1960). MR 140536, DOI 10.1007/BF02591323
- Chi Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018), no. 1-2, 491–513. MR 3803800, DOI 10.1007/s00209-017-1963-3
- Chi Li and Yuchen Liu, Kähler-Einstein metrics and volume minimization, Adv. Math. 341 (2019), 440–492. MR 3872852, DOI 10.1016/j.aim.2018.10.038
- Chi Li, Yuchen Liu, and Chenyang Xu, A guided tour to normalized volume, Geometric analysis—in honor of Gang Tian’s 60th birthday, Progr. Math., vol. 333, Birkhäuser/Springer, Cham, [2020] ©2020, pp. 167–219. MR 4181002
- C. Li, G. Tian, and F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, arXiv:1903.01215, 2019; Peking Math. J., DOI: https://doi.org/10.1007/s42543-021-00039-5.
- Chi Li, Xiaowei Wang, and Chenyang Xu, Algebraicity of the metric tangent cones and equivariant K-stability, J. Amer. Math. Soc. 34 (2021), no. 4, 1175–1214. MR 4301561, DOI 10.1090/jams/974
- Chi Li and Chenyang Xu, Special test configuration and K-stability of Fano varieties, Ann. of Math. (2) 180 (2014), no. 1, 197–232. MR 3194814, DOI 10.4007/annals.2014.180.1.4
- Chi Li and Chenyang Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018), no. 1, 1–79. MR 4059992, DOI 10.1007/s42543-018-0001-7
- Chi Li and Chenyang Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 8, 2573–2627. MR 4118616, DOI 10.4171/JEMS/972
- J. Liu, Toward the equivalence of the ACC for a-log canonical thresholds and the ACC for minimal log discrepancies, arXiv:1809.04839v3, 2018.
- Jihao Liu and Liudan Xiao, An optimal gap of minimal log discrepancies of threefold non-canonical singularities, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106674, 23. MR 4200812, DOI 10.1016/j.jpaa.2021.106674
- Yuchen Liu, The volume of singular Kähler-Einstein Fano varieties, Compos. Math. 154 (2018), no. 6, 1131–1158. MR 3797604, DOI 10.1112/S0010437X18007042
- Y. Liu, K-stability of cubic fourfolds, J. Reine Angew. Math. 786 (2022), 55–77.
- Yuchen Liu and Chenyang Xu, K-stability of cubic threefolds, Duke Math. J. 168 (2019), no. 11, 2029–2073. MR 3992032, DOI 10.1215/00127094-2019-0006
- J. Moraga, Small quotient minimal log discrepancies, arXiv:2008.13311, 2020; to appear in Michigan Math. J.
- Shigefumi Mori, On $3$-dimensional terminal singularities, Nagoya Math. J. 98 (1985), 43–66. MR 792770, DOI 10.1017/S0027763000021358
- Yusuke Nakamura, On minimal log discrepancies on varieties with fixed Gorenstein index, Michigan Math. J. 65 (2016), no. 1, 165–187. MR 3466821
- Yuji Odaka, The GIT stability of polarized varieties via discrepancy, Ann. of Math. (2) 177 (2013), no. 2, 645–661. MR 3010808, DOI 10.4007/annals.2013.177.2.6
- Yu. G. Prokhorov, Blow-ups of canonical singularities, Algebra (Moscow, 1998) de Gruyter, Berlin, 2000, pp. 301–317. MR 1754677
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963
- V. V. Shokurov, $3$-fold log models, J. Math. Sci. 81 (1996), no. 3, 2667–2699. Algebraic geometry, 4. MR 1420223, DOI 10.1007/BF02362335
- V. V. Shokurov, Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 328–351 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3(246) (2004), 315–336. MR 2101303
- Cristiano Spotti and Song Sun, Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds, Pure Appl. Math. Q. 13 (2017), no. 3, 477–515. MR 3882206, DOI 10.4310/pamq.2017.v13.n3.a5
- Shunsuke Takagi, Formulas for multiplier ideals on singular varieties, Amer. J. Math. 128 (2006), no. 6, 1345–1362. MR 2275023
- Michael Temkin, Functorial desingularization over $\mathbf {Q}$: boundaries and the embedded case, Israel J. Math. 224 (2018), no. 1, 455–504. MR 3799764, DOI 10.1007/s11856-018-1656-6
- Gang Tian, K-stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), no. 7, 1085–1156. MR 3352459, DOI 10.1002/cpa.21578
- Chenyang Xu, Finiteness of algebraic fundamental groups, Compos. Math. 150 (2014), no. 3, 409–414. MR 3187625, DOI 10.1112/S0010437X13007562
- Chenyang Xu, A minimizing valuation is quasi-monomial, Ann. of Math. (2) 191 (2020), no. 3, 1003–1030. MR 4088355, DOI 10.4007/annals.2020.191.3.6
- Chenyang Xu and Ziquan Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021), no. 1, 149–176. MR 4325260, DOI 10.4310/CJM.2021.v9.n1.a2
- Ziquan Zhuang, Optimal destabilizing centers and equivariant K-stability, Invent. Math. 226 (2021), no. 1, 195–223. MR 4309493, DOI 10.1007/s00222-021-01046-0
Additional Information
Jingjun Han
Affiliation:
Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, Shanghai 200438, People’s Republic of China; Department of Mathematics, The University of Utah, Salt Lake City, Utah 84112; and Mathematical Sciences Research Institute, Berkeley, California 94720
MR Author ID:
1041405
ORCID:
0000-0001-9339-8502
Email:
hanjingjun@fudan.edu.cn, jhan@math.utah.edu, jhan@msri.org
Yuchen Liu
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208
MR Author ID:
1266987
ORCID:
0000-0002-4281-7057
Email:
yuchenl@northwestern.edu
Lu Qi
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544
MR Author ID:
1451607
Email:
luq@princeton.edu
Received by editor(s):
April 25, 2021
Published electronically:
November 1, 2022
Additional Notes:
The first author was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0713200) and a grant from the Simons Foundation (Grant Number 814268, MSRI). The second author was partially supported by the NSF Grant No. DMS-2148266 (transferred from the NSF Grant No. DMS-2001317). Jingjun Han is the corresponding author.
Article copyright:
© Copyright 2022
University Press, Inc.